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7.1 INTRODUCTION

The purpose of this chapter is to examine a number of techniques for determining the aerodynamic character-

istics of bodies in free flight in a ballistic range. The measurements from which the aerodynamics are to he

deduced usually consist of angular and linear position data from photographic records of a model in flight,

such as shadowgraphs; they could conceivably be acceleration data obtained from onboard accelerometers, or

velocity data obtained from onboard integrating accelerometers or rate gyros. With gun-launched models, the

accelerations and velocities are not usually measured, since at the present state of development accelerometers

and transmitters cannot withstand the launch loads imposed by the gun (see Chapter 12). The discussions in

this chapter will therefore be restricted to the analysis of angular and linear position data as functions of
either time or distance traveled.

There are basically two approaches to the problem of obtaining aerodynamics of bodies from such data. The

first is to curve-fit the position and angular orientation data and differentiate the fitted curves twice to

obtain the appropriate accelerations. These accelerations are directly related through Newton's laws of motion

to the aerodynamic forces and moments acting on the body. This technique presents no problems in mathematics,

but does require data of very high precision. The second approach is to consider the differential equations

which govern the motion and perform the appropriate integrations to obtain solutions for the position and

angular orientation as functions of time or distance. These solutions are then curve-fit to the data to yield

the aerodynamic characteristics of the body. This approach does lead to problems in mathematics. The differen-

tial equations are highly nonlinear and in general cannot be solved in closed form.

Much work has been done by many people on this latter approach. The original contributions in this field

were by Lanchester 7"1 at the turn of the century. His work was mainly restricted to the analysis of airplane-

type motions in which he considered only small deviations from a steady-state glide-path, linear aerodynamics,

and small roll rates. Since ballistics studies generally involved high roll rates and symmetric bodies, the

ballistician had to take a somewhat different approach from Lanchester' s. The original analysis of symmetric

spinning bodies was conducted by Fowler and his associates in 1920 (References 7.2 and 7.3). Because the two

areas, aerodynamics and ballistics, originally had so little in common, they developed independently. With

the arrival of guided missiles, in particular, airplane-launched missiles, the aerodynamicist was confronted

with the same problems as the ballistician and was not familiar with ballistics or ballistic terminology.

BolzZ'", Nicolaides z's and Charters 7"6 did much to alleviate this situation. They made an attempt to merge

the approaches of the ballistician and the aerodynamicist and to clarify the differences in nomenclature

between the two. All of this work was predominantly for linear aerodynamics. The introduction of nonlinear

aerodynamics was done by such people as Murphy and Rasmussen in the early 1960' s _'7'_'s.

With the advent of the electronic computer, the application of many of the above procedures was greatly

enhanced; but even more importantly a completely different approach to the problem was made possible. That

approach is to curve-fit the position and angular orientation data using the differential equations directly

by employing numerical integrations. A method for applying this technique is described in Section 7.8.2.

Much of the work in the field of dynamics, in particular, ballistics and aerodynamics, has been to describe

the motion, given a set of aerodynamic coefficients. Although some attention will be directed to this problem,

throughout most of this chapter emphasis will be placed on the inverse problem. That is, given the equations

for the motion, determine the aerodynamic coefficients which best describe that motion. This problem is not

nearly as unique since it is not known a priori what the functional relationships will be. For instance, it

is necessary to assume either that the aerodynamics are linear or nonlinear, and if nonlinear, the form they
take.

Because the discussions will be focused on ballistic range data reduction procedures, the derivations of the

equations of motion will incorporate assumptions that are pertinent to this type of facility. For example,

because ballistic ranges are normally short, the direction of the gravity vector can be assumed not to change.

Major assumptions which are implicit in all of the material will be specifically pointed out.

The chapter begins with a discussion of the different coordinate systems used in analyzing free flight data.

Once these have been established, the differential equations of motion are derived by considering several ways

of writing the equations for flight dynamics and combining these with appropriate expressions for the applied

forces and moments. With the equations of motion derived, the various techniques for deducing drag, static and

dynamic stability, lift, and rolling moment coefficients (both linear and nonlinear) from the measured data are
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discussed. Typical examples are presented and some of the results compared to conventional wind tunnel measure-

ments. The chapter concludes with a section on error analysis and an appendix treating the method of least

squares using differential corrections.

7.2
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NOTATION

reference area

force or moment coefficient; i can take the values x, y, z, x,y. z, D, L, N, S, l, m, or n.

Some particular coefficients that appear frequently are:

drag

C o drag coefficient, ½pV_ A

lift

C a lift coefficient. _pV_ A

moment

Cm pitching moment coefficient, ½pV2AI

partial derivative of C i with respect to a variable k ; k can take the values a, &,_,_,

p, p, q. q, r, or _ (refer to Equation (7.74)). Some particular derivatives that appear

frequently are:

Cu_ lift-curve slope, _CL/_a

moment-curve slope, bCm/_aCm_

Cmq + Cm& damping-in-pitch derivative, _Cm/_(ql/V) + _Cm/_(_I/V)

normal-force-curve slope, _CN/baCN_

partial derivative of Cia with respect to the roll rate p (Magnus terms)

value of C i at zero angle of attack

force vector

Coriolis force

component of force

gravitational constant

damping moment coefficients, n : O, 1, 2 .....

effective linear damping

I Hn n

2 _ n H 0 _a (Equation (7.201))

moment of inertia: for an axially symmetric body, Ip : I_ : I ; for a general body oscillating

in one plane, I is the moment of inertia about an axis perpendicular to that plane

roll, pitch, and yaw moments of inertia in body-fixed coordinates

roll moment of inertia in fixed-plane coordinates (I_::l[)

pA/2m

DAI/21

reference length

moment vector

static moment coefficients, n - 0, I, 2 .....

-Mn/(DV_A I/2)

moment components in body-fixed coordinates
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moment components in fixed-plane coordinates

Mach number

mass

,-n
Mn'X_/M o or An_a/M 0

components of angular velocity in body-fixed coordinates

components of angular velocity in fixed-plane coordinates

roll-rate parameter, (I_/I)p (I_/I)_

generalized force or moment

generalized coordinate

Reynolds number

standard deviation

total kinetic energy

transformation matrix from he coordinate system to h 1

time

linear velocity components in earth-fixed coordinates

linear velocity components in body-fixed coordinates

linear velocity components in fixed-plane coordinates

velocity vector

magnitude of velocity vector, IVI

earth-fixed coordinates

body-fixed coordinates

fixed-plane coordinates

trajectory coordinates

projection of resultant angle of attack onto x-z plane, onto

angle of attack and angle of sideslip in body-fixed coordinates

angle of attack and angle of sideslip in fixed-plane coordinates

defined by (2m)k÷ 1 ] where k denotes peak number

maximum angle of attack

resultant angle of attack

root-mean-square angle of attack

gamma function

angles relating trajectory axes to earth-fixed axes

projected angles

Euler angles

modified Euler angles
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coordinate system

x-y plane

the direction of flight with respect to the local meridian and the geographical latitude of

a given facility (Equation (7.71b))
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7.3.5 Trajectory Axes

Another useful coordinate system has one axis along the local velocity vector, (_), and the other two per-

pendicular to the local velocity vector, (_,_). The _ and _ directions are chosen such that _ lies in

the x-y plane perpendicular to _, and _ forms a right-handed system. This system is illustrated in

Figure 7.5. The angles locating these axes are "/1 and "y_, analogous to t/,ME and OME .

These coordinates are useful for axisymmetric bodies and/or planar motion in writing the aerodynamc forces

and, in some cases, the equations of linear momentum. In tests in a ballistic range, the angles 71 and 7 2

are normally very small and hence certain simplifications are possible.

7.3.6 Relationships Between Systems

Since it is sometimes necessary to transform one coordinate system to another, we will give some transforma-

tion relations, both exact and approximate, before we proceed to the equations of motion.

The transformation matrix is tha_ matrix which operates on a vector in one coordinate system to produce the

vector in another system. For example, the forces in the body-fixed coordinates F B transform to earth-fixed

coordinates PE by

FE :: [T]E/_F s , (7.3)

where IT]E/B is the transformation matrix. This transformation matrix preserves the magnitude and direction

of the vector; that is, it simply relates the vector to a different coordinate system. Hence, these matrices

have the properties of a unitary matrix; that is, the inverse is equal to the transpose,

(Tij)-' - (Tji) (Tij)T . (7.4)

Hence, it follows that (Tij)A/s - (Tij)_/A .

The transformation matrix for body-fixed to earth-fixed coordinates (using modified Euler angles) is

COSO.ECOS_.E sin_MECOS_.Esin_ - sinv!,M_cos_ sin_MECOSV'_ME COS_ + sinvJMEsin41

[T]E/S = COS_MEsin_ME sin0MEsin_Esin_ + COS_MECOS¢ sinPMEsin_,MECOS,_- COS_MEsin . (7.5)

- sin _ME COS OME sin ¢ cos £_ME COS ¢,

For body-oriented fixed-plane coordinates to earth-fixed coordinates, it is

/ cos OME COS_JME - sin _"ME sin (?ME COS _YME_
IT] E/r P - cos riME sin q_ME COSCME sin UME sin _,ME ] (7.6)

!

- sin _E 0 cos PME /

and for trajectory coordinates to earth-fixed coordinates, it is

/ cos TI COST2 - sin'y, cosT, sin ?'_

iT] E/T-: \ sin T, cosT_ cosT, sin'y, sin'y; .
\ - sin_2 0 cosb' 2

It is possible to obtain relations between any combination of these systems using appropriate matrzx

multiplication.

These matrices will now be considered for small angles (except _): that is

(7.7)

sin (a) = a

cos (a) 1 .

Then the transformation matrices become

1 OMEsin( _ - _')ME COS _

IT] E/B ON E cos _5

- _ME sin (_

t)MECOS(hcos-sin "v5_,5 _ t/_uE sin q_ /

(7.8)

IT] E/rp :

\ -OME 0

(7.9)
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[T]E/T= _1 1 ' (7. 10)

--72 0

Note that in these last three transformations, it would be consistent with the small-angle assumption to

replace _Mg and 72 by their projected values (on the x-z plane).

Another transformation matrix which is of interest is that between the trajectory coordinates and the body-

oriented fixed-plane coordinates. This is obtained by the appropriate operations on Equations (7.6) and (7.7)

(i. e., [T] FP/T : [T] FP/E " IT] E/T = [T] E/ppT . IT] E/T). The result to first order is

I I _Me - 71 -_ + 7 1

[T]Fp/T : -_ME + 71 1 0 .

\OME - 72 0 1

The interpretation of the elements of this matrix is straightforward.

velocity in the fixed-plane system using the first order matrix, the result is

or

VFP : IT] FP/T " VT

-_bmE + ")t t 1 0 •

_ME - 'Y2 0 1

(7.11)

If one calculates the components of

(= (-¢ME +71) : . (7.12)

(_ME-7_)V/

Since the angle of attack and angle of sideslip are defined as

: sin'_ _ .

then to first order

(7.13)

: OME - 72 I

(7.14)

These angles are the off-diagonal elements in the transformation (7.11). They can be better visualized by

referring to the lower portion of Figure 7.4. This is a view looking aft along the earth-fixed x axis

at the y-z plane, h unit vector along the model axis, X, has a projection O-A, labeled _ , with

components _ME and QME " h unit vector along the total velocity vector appears as a projection O-B and

is called _. The components of _ are _/V and _/V , which are essentially equal to 7L and -72 .

The vector B-A between the velocity vector and the model axis f is called the resultant angle of attack,

_a , and has components _ and _ . Therefore

_e : _ - _ " (7.15)

This is an exact expression when velocity components are used. Also shown in this figure is the angle, _,

which one would observe between the coordinate axes and a canard on the nose of the body.

The coordinate systems necessary for motion analysis are now defined, and their relationships to one another

have been given. We can now proceed to the development of the equations of motion for a body in free flight.

7.4 EQUATIONS OF MOTION

The equations of motion will be developed in three steps. First, the dynamics of a body in free-flight will

be expressed in several forms. Second, expressions for the aerodynamic forces and moments will be obtained.

Then the forces, moments, and flight dynamics will be combined to obtain the differential equations of motion.
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7.4.1Flight Dynamics

7.D.I.f Introduction

The behavior of a rigid body in flight is governed by Newton's laws ol motion. Although there are various

ways of expressing these laws, the simplest is to write the equations of conservation of linear and angular

momentum within an inertial reference frame

d (mY')

(7.16)
dt

and

M* . (7.17)

where m is the mass of the body, V is its velocity vector, F is the force vector acting on it, [I] is

the moment of inertia (a 2nd rank tensor), /,; is the angular velocity vector, and M is the moment vector.

To apply these equations in a moving coordinate system one needs the transformation

where A is any vector quantity, m denotes the moving system and f the fixed system. An example of the

type of quantity produced by the 2nd term is the Coriolis acceleration which appears in the equations of motion
expressed in earth-fixed coordinates.

Another formulation of the momentum equations is that of Lagrange. It will be used more extensively in the

following development than the basic form given above.

7._.I._ Lagrangian Equations

The Lagrangian equations of motion are derived in textbooks on dynamics _'1°. These equations greatly simplify

the handling of the pitching and yawing motion of a body in free flight. The Lagrangian equations are

-- -- = Qi
dt t_-_qi/- _qi

(7.19)

Here T is the total kinetic energy of the system; qi is the i th generalized coordinate; qi is the time

rate of change of qi; Qi is the force tending to change qi; and t is time. There are as many such

equations as there are degrees of freedom, the subscript i representing, therefore, the i th degree of freedom.

For free flight of a rigid body there are six degrees of freedom, three translational and three rotational.

The total kinetic energy of a rigid body in free flight is written as

I i 2 t 2 I 2
T _m (_2+_2+ _2) + 7I_p + _I_q + _I_r , (7.20)

where m is the model mass, I_, Iy, and I_ are the moments of inertia about the three principal axes, p, q,

and r are the angular rates about the principal axes and i u, y v, and z - w are the components of

velocity in the earth-fixed axis system. Note that in using earth-fixed axes some energy has been ignored due

to the non-inertial character of the earth-fixed coordinates. The only important term here is the Coriolis

acceleration which we will discuss under the section on forces.

For a body with axial symmetry

and hence the total kinetic energy can be written as

I[ : I (7.21)

' ' ½I (q2 + r 2) (7.22)T _ _m(½2+_e_ _2) + 7ix_p2 +

Note that any body which has a plane of mass symmetry and trigonal or greater rotational (mass) symmetry can be

considered to be axially symetric with respect to its moments of inertia (I] I_).

7.6.1.3 Equat ions of Linear Momentum

The equations of motion in the x, y, and z directions can be obtained as follows: Let x be the first

generalized coordinate,

7{\57-/- _ : Qx <7.23)

Using Equation (7.20),

d2x

(7.24)
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similarly,

and

d2y

m d_ = Fy

d2z

m-- Fzdt 2

(7.25)

(7.26)

In vector form these equations can be written

(7.27)

Note that the mass, m , has been taken outside the differential operator. This can be done not only if the

mass is a constant, but also if the velocity (relative to the body) of the mass that leaves the body is very

small. In that case, its contribution to the change in momentum can be neglected. Most of the problems to be

treated will be for constant mass but some cases will be considered with variable mass where this momentum

assumption is thought to be valid.

These equations can alternately be written in the trajectory coordinates described earlier.

the component of force along the velocity vector is

d2_

The result for

(7.28)

and that normal to the velocity vector is

\dt]
(7.29)

The term on the left side of this equation is the centrifugal force term (R c is the radius of curvature of the
flight path) which arises from the non-inertial character of the trajectory coordinates.

7._.1._ Equations of Angular Morttentum

The Lagrangian equations of angular motion can be written with each of the three sets of angles which have

been introduced. The angular momentum equations will be written (at least in part) using all three sets so

that similarities and differences can be seen. First, however, one must obtain the angular velocities in terms

of the angles for each of the systems. They are listed in the following table.

Euler Angles Modified Euler Angles Fixed-Plane Modified
Euler Angles

• .

p : %+_cos_ p : _-_.EsinO.E _ : _-_._sin_._

q : 5c°s_JE + ()Esincsin_bE q : 0MECOSqb+_MECOSt_MEsin(_ q -- OME

r :: -$sin_b E + _esinccos_bE r : CMEcOSOMECOSq5- _MEsinq_ y : _MEcOSOME

Since the Euler angles and the modified Euler angles are more generaI in that they do not require axial symmetry,

they will be considered first. The total kinetic energy using the Euler angles is

T :- ½m (i2 _2+_2) + ½1:(_:E+_ECOS:)2 + _Iy (ocos+E+_Esin_sin¢E)2 +

+ ½1:(-5 sin_,s +_Esin:cos_r) 2 (7.30)

and the total kinetic energy using the modified Euler angles is

T 2_m(12 +92, _2) + ½I:(___MEsinOME)e + ._I:(_MECOS,_÷_,MECOS(;MEsin¢)_ ÷

+ ½Is(_M_COSOMECOS¢--_MEsin¢) e . (7. 31)

It is straightforward to substitute both of the above expressions for T into the Lagrangian equations (7.19)

and arrive at the equations of angular momentum. However only those equations using modified Euler angles will

be listed here. For the _ME coordinate, we get

d ,
dt--_-_/ = _ [I_(¢'-_ME" s_n" ME)(-s:n'_ME) + I_(_MECOS¢+¢_ECOS_MEsin_) (COS_MEsin_)

+ IE (_SE COS _ME COS¢-_Me sine) (cosOun cos_)] : QCME (7.32)

= [Mm sin _ + Mn COS _] cOS _M_ '
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for the _ME coo rd inat e,

dt _ME

+ I_ (_HE COS _ME COS _- 0ME sinqb) (-sin _)] +

+ :_ (_-_.Esin_._) (_._cos_ME) +

+ ly (_.Ec°s ¢+_MECOS #.Esin¢) (_.E sin#.E sinq_) +

+ I: (_ME COS _ME COS _- _)MZsin _) (_MZ sin _eE cos _) : QSSE

= d [ly (_,ECOS_b+_,ECOSOMEsin_) (COS¢) +
dt

: Mm cos _ - Mn sin _ (7.33)

and for the q_ coordinate

d (_) _T _ d [i_(___.zsin_.E)] +dt hq_ d t

+ I_(_.Ecos¢+_.Ecose.esin¢)(e.Esin_-¢.ecose.zcos¢)+

+ I: (_ME cos _ME COS q_- bME sin qb)(_ME COS _ME sin qb+ _Mz cos _) : Q¢ = M! . (7.34)

These equations represent a set for the angular momentum. They are general in the sense that they apply to an

arbitrary rigid body.

A more widely used form for the equations of angular momentum of an airplane-like configuration can be obtained

from (7.17) and (7.18). First let w :(_(p,q,r). Then note that the cross-product needed in (7.18). _ × I_,

can be represented by the determinant

p q r

Ix-P lyq l_r

The resulting equations are:

Igr = pq (li- I_) + Mn I

I_q pr (I_ I_) + M m (7.35)

Ii_ qr (Iy 15) + M l .

In comparison to (7.32), (7.33), and (7.34), these equations are much simpler. Because (7.32)-(7.34) are so

complicated, we will treat some specialized canes which result in many simplifications.

7.4.1.5 Planar Motion

For the case of planar motion (an oscillation confined to a single plane, here arbitrarily the x-z plane)

_ME is identically zero and since there can be no roll, _ : 0 . Note that the results obtained will apply
to any planar motion since in the absence of an important gravity force, the x-z plane can he rotated to the

plane of motion. With these conditions (a single degree of rotational freedom) the equation for angular momentum

is
..

Iy_M E : Mm . (7.36)

7.4.I.6 Small Angular Mot_on

There are a number of subeases in this category and several of them will be considered. First assume that

the angles _ME and CME (but not necessarily ¢) and the angular rates and accelerations are small. Hence,

sin_MZ = CME

sin _E : _ME

COS _ME : COS _ME : 1 .

With these restrictions and neglecting products of small terms, the equations of angular momentum in terms of

the modified Euler angles reduce to the following:

I:(_MEsin_cos_÷_MEsin_) + I:(_.Ecps_¢--_MESin_cos_) : Mm sin _ +M n cos ¢ (7.3V)

I_(_ECOS_+_MEsin_cos_) + I_(--_Esin¢cos_+_Esin_) : Mm cos_- Mn sin_ (7.38)
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I_ = MI . (7.39)

If, in addition, we assume there is no rolling torque (M l :0), (7.39) can be solved and

¢ : A + st . (7.40)

If this result is substituted into (7.37) and (7.38) the result is

l_[_MEsin (A+Bt)cos (A+Bt) + _MEsin2 (A+Bt)] + I_[_MECOS2 (A+Bt) - _MEsin(A+Bt) cos (A+Bt)] (7.41)

= M= sln¢ + M.cos¢.

and

Iy [_'sECOS 2 (A+ Bt) + _MEsin (A +Bt) cos (A+Bt)] + I_ [-_sEsin (g+Bt) cos (A+Bt) + _MESin 2 (A4Bt)] (7.42)

= Me COS _b- Mn sin ¢.

The left hand sides of these two equations are linear with variable coefficients and are coupled.

Finally, if it is assumed that the angle ¢ is also sma11, the equations become

IZ_ME : Mn ]

.. _ (7.43)I_OMZ : Mm .

All of the coupling has now been removed from the left hand sides.

7.6.1.7 Axially Symmetric Bodies

A more restricted but often encountered case will now be considered, namely, that of an axially symmetric

body. Noting that Iy = I_ : I , the kinetic energy can be expressed in terms of Euler angles as

T : ½m(i2+_2+_. 2) + _I_(_bE+_ecoscr)2 + ½I(_2+_sin2cr) . (7.44)

The following equations of angular momentum can then be obtained.

d [I_(_E+_ECOS_)COSC _ + i_Esin2_ ] : Q8 E (7.45)

d

dt
(7.46)

d [::(_+_Ecos:)] Q_E" (7.47)
dt

These equations represent the

and, defining a new parameter

most general case for an axially sy_etric _dy.

P Ig
= --p,

I

Noting that _E + _E cOS_ : P

(7.48)

then (7.45), (7.46), and (7.47) can be written as

d

-- (IPcoscr + I_ s sin2_) : _OOE (7.49)
dt

d (I_) + IP_ E sin: Ib_sin_cos_ Qo (7.50)
dt

d
-- (IP) (7.51)dt : Q6E "

A special case using these equations is for zero roll torque (Qcz _ 0) and for zero precession torque (QoE _0).
With these restrictions, (7.49) and (7.51) become

IPcos_ + I_Esin2_ = constant _ Ib (7.52)

IP : constant , (7.53)

and hence, (7.50) becomes

d IP(b- P cos_) I cos_Co-P cos_) _

d"t (I5) + : Q_ . (7.54)sin _ sin 3
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Note that even for this restricted case the problem is highly nonlinear even if the right hand side of the

equation is linear. This equation remains nonlinear even for small angles (i.e. c small).

For the case of c small. (7.54) reduces to

(b- P) (b-P)2
I_; + IP -- - I -- : Qo- - (7.55)

For planar motion b = P = 0 and (7.55) reduces to

I_ : %. (7.56)

Note the left hand side of the equation is linear.

One other case that is of interest is that for which the moments are all conservative. Here the sum of the

kinetic energy plus the potential energy is constant. This case is developed in Reference 7.8 and will not he

discussed here.

Next the momentum equations using modified Euler angles in fixed-plane axes will he considered.

I_ = I_ = I , the total kinetic energy is

T - _(_t+_+_t) _ h_(___.Esin_.E)t + h(_Ecos_._) • (7.57)

Substituting into the Lagrangian Equations (7.19) one obtains for _ME' OME' and ¢_ respectively

Noting that

d [-I:(_-_MESin(_E) sin_wE + I(_,E COS_JME )] : Mn coS _ME (7.58)
dt

d (I_ME) + I_ (q_--_MEsin_)ME)_.ECOSO.E ÷ I_s SIn_MECOSC)ME -- Mm (7.59)
dt

d [I_(___,zsin0ME) ] : MI • (7.60)
dt

These are the basic equations using modified Euler angles, and are similar to those with Euler angles. Consider

the case where Mt = 0 (no roll torque). One obtains

I

(_-_ME sInOME) : P = constant z I_ P " (7.61)

Substituting this in the remaining two equations yields

-IP_MECOS_.E + I_MECOSt0.E -- 2I_M EO.Esin_.Ecos_.E : Mn COS 0.E (7.62)

and

If these equations are now linearized, the result is

_ - _P_ = Mn (_.6_)

i_'_ + i_._ = _o , (_65)

where it has been assumed that

cos_Mz _ 1 _ (7.66)

sin_ _ _E J
and products of small terms have been neglected. Note that it is convenient to express (7.64) and (7.65) as a

slngle equation in the complex plane (since _ME and _ME are orthogonal). This is done simply by multiplying

(7.64) by i (_(-i)) and then collecting real and imaginary parts.

I_- ilP_ = M , (7.67)

where 7
fl = OM E + i_ME (7.68)

and

: _,+ i&.. (7.69)
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There is another method (although not discussed here) of developing the dynamic equations of motion of a

symmetric body which employs the nonrolling axes mentioned in Section 7.3.4 (Ref. 7.9). This approach is

advantageous in that a simple, exact differential equation for pitching motion can be obtained, but it is not
as convenient to use since measured data must be expressed in an inconvenient reference frame.

With the above several formulations of the dynamic equations of motion available to us, it remains to consider

the applied forces and moments which make up the right hand sides of these equations.

7.4.2 Forces and Moments

7.6.2.1 Introduction

The forces and moments acting on a body in flight can originate from a number of different sources, including

pressure and shear forces, gravitational force, buoyancy force, Coriolis force, and electromagnetic force. In

ballistic range tests, aerodynamic forces are usually dominant, and for tests of low flight velocity amd/or long

duration, gravity and Coriolis forces can become important. Buoyancy and electromagnetic forces are negligible

and will not be considered. The bulk of the discussion in this chapter will be concerned with aerodynamic forces

and moments. However, since gravity and Coriolis forces are sometimes considered, they will be described briefly
nOW.

If the coordinate system is earth-fixed as described earlier, the gravity vector is always aligned with the
z-axis and hence the gravity force can be written as

Fz gray = mg . (7.70)

The Coriolis force is given by

= 2m(_ Ex V) , (7.71a)

where _E is the rotational velocity of the earth (wE = 7.3 x I0 -s rad/sec), and m is the mass of the body in
flight. Equation (7.71a) can be expanded to obtain

F c = 2mwEV(sin_l +ic°s_Isin_a ) , (7.71b)

where the first term is along the y axis and the last term is along the z axis, Gl is the geographical

latitude of the facility (0° at the equator) and _a is the direction of flight (i.e. the angle between the

earth-fixed x axis and the local meridian - due east yields _a = 90°)"

7._.2.2 Aerodynamic Forces and Mo_ents

The aerodynamic forces and moments are defined in body-fixed axes normally chosen to be principal axes through

the center of mass. This coordinate system, with related forces and moments, is shown in Figure 7.6. The force

components produce moments Ml , Mm, Mn about the _, y, and _ axes, respectively.

The aerodynamic forces and moments are in general quite complicated. The aerodynamic force coefficients are

expressed as Cforc e = Force/½pV2A and the aerodynamic moment coefficients as Cmoment : Moment/½pV2h/, where
p is the density of the fluid through which the body is flying, V is the flight velocity, A is the reference

area, and l is the reference length. They are functions of flight speed, conditions of the test gas, model

scale, and geometry. They also depend to some degree on the flight history. If the dependence on history were

strong, a correlation of results would be next to impossible. In practice this dependence is not strong.

Therefore, the "aerodynamic hypothesis" will be invoked; that is, the forces on a body in free flight can be

expressed in terms of the body's instantaneous motion. This can be done in two ways; in terms of velocity

ratios _/V, _/V, W/V, p, q, and r and derivatives thereof or, equivalently, in terms of the angles repre-
sented by the velocity ratios _/V,_,_, p, q, r. In the work to follow the latter will be used.

The aerodynamic hypothesis should apply when the flight distance in a cycle of oscillatory motion is many

times the length of the body, the usual situation both in full-scale flight and in ballistic ranges. Despite

this simplifying assumption, there remain many variables on which the forces may depend. We will write this
functional dependence as

Fi - C i (R_,M_,_,_,_,_,P,q,r...)½PV2A , (7.72)

where Ci(R_,M _ ......... ) is the i th force coefficient (for example, i-_y,z) and R_, M_ are Reynolds
number and Mach number.

Similarly, for the moments

Mj = Cj (R_,M_,_,_,_,_,p,q,r...)½DV2A/ , (7.73)

where Cj is the jth moment coefficient (the subscript j becomes l,m,n for moments about the _,y, and _ axes,

respectively).
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For well-behaved aerodynamic coefficients (i.e.. smooth, continuous and single-valued functions) the coeffi-

cients can be expanded in a Taylor series as follows:

Ci Ci o Ciq_ +

_, l /" l

pl ell rl

Cip _ + C i _ t.-g CirV

_l 2 _l _ }l 2
+ ci6 7 + ci_, 7 _ ci; 7 +

pl pl
- -- Jr . _" +

+ Ci_pa v c1_p_ v

& pt t_l pl
"k . + ..

C1&p V V Ct/_p V V

[pl\ 2 ell pl rl pl

÷ t-'_)-- + -- __ +Cipp Ciqp V '¢ Cirp V V

t_l 2 pl (tl 2 pl rl 2 pl

• + , + . V2+ Ct_p V 2 V Cl_p V 2 V Cl_p V

÷ higher order terms . (7.74)

Here i is used as a general subscript for both forces and moments (for example, i = i,P,_, /,m,n). The second-

order subscripts denote derivatives which have been nondimensionallzed (e.g.. Ci_- bCi/Da, Ci& = 8Ci/8(_//V),

Ci_ = b2Ci/bKb(pl/V), etc.). The terms involving p, q, and r are included for completeness since, under
cen_er of gravity translation, they are required to keep the force system invariant. They are neglected in

practice, however, because they are small, and will not be carried along any further in this chapter.

The terms in the above eeluation can be interpreted as follows:

Ci 0

Cim, CiB

trim coefficients (e.g., the axial force C_o)

initial static force or moment curve slopes (e. g. initial

normal-force-curve slope)

Ci&,
damping coefficient due to rates of change of angle of

Ci#a attack and sideslip

Cip, Ciq, Ci r

Ci_p' CiBp .....

damping due to model roll, pitch, and yaw

Magnus terw_s. (^ body traveling in, say, the x direction

and spinning about the z axis experiences a force in the

y direction due to the spin; forces of this type are

called Magnus forces.)

These coefficients depend on Mach number, Reynolds number, and perhaps on other test conditions, but not on

_. _. P, el, r and their derivatives. In any ballistic range test there will be a change of Mash number,

Reynolds number, etc., over the length of flight. One could expand the coefficients about the values at the

center of the flight trajectory to yield a mean value.

CiK = CiK] .... + _AMm+ _CIK_Rm+_C|., _Rm ''"

For most of the material covered here, the following assumptions will be made:

_Ci K

_Mm << CiKlmea n

_Ci K

8R m _Rm << CiKlmean
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Therefore, for all flight conditions

C.
1 K CiKI mean "

Note that these assumptions may be satisfied in two ways: either the derivatives are small (normally they are

except at certain critical conditions such as in the transonic regime); or there is little change in conditions

along the instrumented flight path. For example, the velocity loss is small.

In general, (7.74) states that there are 126 aerodynamic coefficients (first-order plus Magnus terms).

However, depending on the degree of symmetry exhibited by the particular body under consideration many of the

terms are zero or equal to other terms. The reader should be aware at this point that although these symmetry

arguments are based on good mathematical and physical concepts, there are some recent experimental data 7"11

which show that under certain conditions an (apparently) axisymmetric body at some angle of attack and zero yaw

experiences nonzero side forces. These forces are not understood at present. With this in mind conventional

symmetry arguments will be presented.

7._.2.3 Mirror Synu_etry About One Plane (Airplane-like)

Mirror symmetry was considered in a very general mathematical fashion by Maple and Synge 7"z2 and a good

physical description is given by Charters 7"6. Under the conditions of mirror symmetry many of the coefficients

in (7.74) are zero. In addition Magnus terms can be ignored for airplane configurations because roll rates are

normally of the order of pitching rates and hence the Magnus terms are 2nd order.

The force and moment coefficients can be written as*

C_ - - C_ - -:= - Cxo - Cxa _ C_q -_-

_ fll pl rl

= % % V [%]

_l ql

C_ = - - C_ - -c_0 c_a V c_q _-

C l
C 5 _3l + pl rl
I/_/'4C'fl V Clp V _ Clr V + [C'o]

_l ql

Cm : Cmo t Cm _. + Cm_ "_" 4 Cmq _ -

/_l pl rl

C n = Cnflfi + Cn/_ T + Cnp V + Cnr V ÷ [Cn0] "

These then represent the linear force and moment coefficients for airplane-like configurations.

on _ and _ are in conformity with standard practice. There remain 27 coefficients.

(7.75)

The minus signs

7._.2.6 N-gonal Symmetry Plus Mirror Syataetry

This notation simply means that the configuration has a plane of symmetry and has N indistinguishable

orientations of roll about its axis of symmetry located 2_/N radiass apart. Magnus terms will be retained

now since p can be large, hgain Maple and Synge 7"12 have given the results which follow (as well as for the

N-gonal case without mirror symmetry, e.g., canted fins), and a good physical description of a configuration

with 90 ° roll synwetry (N 4) has been given by Charters 7"6. It will suffice here to state that for linear

aerodynamics any model with trigonal or greater rotational symmetry can be considered axially symmetric. This

additional symmetry allows many more coefficients to be set to zero and also yields

cpZ : - c_a, Cy_ : - cE&, cy r : C_q,

C_p = C_p, C_p : CE_p, C_qp : - C_r p

Cnfl = - Cma, Cn_ : - Cm_, Cn r : Cmq,

C : -
na p : Cm_ p , Cn_p : Cm_ p , Cnqp Cmrp

(7.76)

* The bracketed terms in (7.75) are ideally zero. In some sections of this chapter, however, they will be retained to

account for smell asymmetries.
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Hence, due to trigonal symmetry or greater the force and moment coefficients become

Ci CI ( pl
: - Cxo - pp \V-I

Z

pl rl _ pl _l pl ql pl

% %z + -+ -- +[%j: - - Czq V Cz_p a V Cg_p V V - C_rp V V

_l ql - pl fil pl rl pl

Cl pl
: Ctp -_- + It/o}

_l ql c F pl plpl rl pl
cm : cma+ Cm&V+ cm + + ----+ c ---- + [Co ].V _,_,, V %_, v v r,, V V

pl rl pl _l pl QI pl

: --+c_ +c,za--+c -----c -- + [j_C.o_Cn -Cmct_-Cm_, V q V V m/_p V V rp V V m

(7.77)

Again, the bracketed terms are ideally zero but are retained to allow for small asymmetries.

7.4.2.5 Drag and Lift Forces for Airplaae-like Configurations

The expressions for aerodynamic forces and moments given so far have been in terms of the body-fixed coordinate
system. Another frequently used set of aerodynamic force coefficients are those oriented relative to the

velocity vector. For airplane-like configurations these are drag, lift, and side force. The drag component

is along the velocity vector; the lift force is normal to the velocity vector and the _ axis; and the side-

force forms a right-hand system. These forces can be written by transformation of the forces in the body-fixed
axis system:

FD : - Ficos_cos_- Fysin_ - F5sin_cos

F L : F_sin_ - F_cos

Fs : F_cos_sin_ - F_cos_ + F_sin_sin_ .

An alternative is to express them through their own expansions.

F D = Cn_PV_A

_l ql\,
= + CDot_( + + C D _) _pV2Ac% CD& -_ q

(7.78)

F L : CL½pV2A

: +c@ + , -Cuo ca& -_ Cuq (7.79)

Fs = Cs_PV _A. (7.80)

7._.2.6 Drag and Lift Forces for Axially Symmetric Bodies

For axially symmetric bodies, the drag force is again along the velocity vector, but the lift is now defined
as being normal to the velocity vector and in a plane such that there is no side force. It is difficult to

express these forces in terms of body-fixed forces because of the Magnus terms. Ignoring Magnus terms, the

drag and lift are related to the body-fixed forces through the resultant angle of attack, _R

F D = - F_cos_R + FN sin_R]

I

F L F[sin_a + FNCOS_R _ (7.81)

JF s = 0

where F_ : IF_ ÷ iF_l .

Note that FN is frequently referred to as normal force and P_ as axial force.
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The drag and lift forces can also be written with their own expansions, and to first order including the
Magnus terms

, (+ (0,j).FD = CDT/?V A = CDo COp p _- 7pV A (7.82)

[( C °' < ) ]F L - CLu + iCLa p -- (_) i_) t CLq p _- + iCLq (q + Jr) + CL& iCL4p _/ l+ _ (F+i_) L?v2A.(7.83)

7.4.2.7 Coordinate Transformation of Angular Rates

A question which has not been considered up to this point is what happens to the rate terms in the force and

moment expressions when rotations about the _-axis are required in transforming from one reference frame to

another; for example, from body-fixed coordinates to fixed-plane coordinates. The complex angle, (_ + i_), when

rotated to fixed-plane coordinates, is simply

e i_dt (_÷ i_) : _ + i: .

Consider the rate terms by differentiating both sides with respect to time:

Rearranging and substituting _ + ia for e if_ dt (_ + i:) we get

Note that we have generated an additional term. Murphy )'° "avoids" this by including a term of opposite sign

(+ i_(_+ i5)) in the force and moment expressions in body-fixed coordinates, and hence the second term disappears

after transformation. Nicolaides 7"s neglects the second term in the above equation completely. An important

conclusion is that when rate coefficients are quoted, one should indicate what coordinate system they are applic-

able to.

7.4.3 Differential Equations of Motion

The momentum equations and expressions for the forces and moments may now be combined to obtain the equations

of motion for use in analyzing experimental data.

7._.3.1 Airplane-like Configurations

The equations of motion of an airplane-like configuration can now be obtained by combining the momentum

equations (7.24). (7.25), (7.26), and (7.35) with the forces and moments given by Equation (7.75). The linear

momentum equations for small angles and angular rates (except roll), neglecting gravity and Coriolis forces,

then become

d2x

m d-_ -- ex _ F_ + F_ + Fy_)

+ Cn _, + + -- ½,L,V2A (7.84)"__ _ DO CD_ "V COq

d2y

m _ : Fy _ - (r_-F_:)sinqS + (F_-F_/?)cosqS (7.85)

d2z

m d-_ = F z _ (Fg-Fi_)cosq_ + (F_-F_b_)sinqb (7.86)

where (F_-F_(()_- F L is given by (7.79) as

= + CLa_ + "pV 2A (7.87)FL CLo + CL_ V CLq V "

Now using the angle relationships developed earlier for small angles (Equation (7.14)), the angle of attack and

sideslip in body-fixed axes can be written as

: ([)UE-'Y2)COS96 + (_bMz-$/1)sing5 (7.88)

P_" : - (_ME-)'_)COS_b + (()_E-T_) sin(/_ . (7.89)

Differentiate these equations to get _ and _; then substitute the small angle expressions of p, q, and r

(see table in Section 7.4.1.4), note that _2 %- (I/V) z and _ : (I/V)y', and utilize (7.85) and (7.86) to
arrive at
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mV
(7.90)

: -r+p_+-_- _
mV

(7.91)

Equations (7.35), (7.90), and (7.91) can be combined and after eliminating q and r

the following differential equations are obtained.

I _ P_ P_ ]pV2A_

+ k )LC, + v +c,°

and their derivatives,

_ (7.92)

21---__ Cm0 + 6_-

i_- I_ pvA/ pl )i_ p_C,p _+ cy° _ 0

"-" -" " PV2A/ _E +

+c_/_+ c,/_+ c,_+c_ + 21--_--%° -

I_ - I_ pVA C pV2A/ pl
+ __ p + z 0

I_ "_m Lo 2I_ Cnp-V

(7.93)

(7.94)

whe re

pVA pV_A/ l

CI = 2m CLo_ 2I_ V (Cmq ÷ Cmc_)

C 5

pV2A/ I_- I_

C2 -- 21y Cma Iy

I_ - I i

pV2AI I I_ - I_ pVA

pVA pV2h I l

(C_/3 + CDo) - (Cnr -Cn_)
2m 2I_ V

_ __p2

C 6

P

C 7

C 8

In the above coefficients the following types

(i) Products of aerodynamic coefficients

which are normally very small).

P V2A/ _ p2

21_ Cn/3 ÷ I_

- 19 p

[pV2A__ l_ - l__VA ]+ CLct P .L-_-_ _ Cn_ _ 2m

of terms were deleted:

(because they always appear with (pA//2I) 2 or (pA/2m)(pAl/2I)

(ii) Certain rate terms which appear with other terms that are much larger; for example (phl/2m)(CLq +CL_) << 1.

(iii) Terms involving products of angles and/or angular rates, like _ or _.

Equations (7.84), (7.85), (7.86), (7.92), (7.93), and (7.94) are the equations of motion used for the analysis

of airplane-like configurations. Note that for constant roll rate the right hand side of Equation (7.92) is

zero as is the p term in (7.93) and (7.94). Note also that the last term in (7.93) and the last two terms

in (7.94) are normally ignored.

Even for constant roll rate the coefficients C_, C 2 ,C ,C s ,C6, and C 8 are not strictly constant since

they contain velocity which will change because of drag. The coefficients can be made essentially constant by

changing the independent variable from time to distance. This is accomplished as follows:
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d d

-: U dx

but

so

-- - -- u
dt 2 dt

V _ u,

du pV2A

d-_ : - Co 2m

d _ du d

= U2_--_ +---- ;dt dx

and hence d 2 d 2 pA V2 d
-- : V 2 __ _ C D -- __
dt 2 dx 2 2m dx

p(t) : Vp(x) .

Equations (7.85). (7.865. (7,935, and (7.945 now become

d2y pA dy F L

dx--_ = 2-m CD_xx + --mV2
sin ¢ + -- cos

mV 2
(7.955

d2z pA dz PL _ sin ¢
-- : C v cos¢ +
dx 2 2m dx mV 2 mV 2 "

(7.96)

Retaining the most dominant terms, the forces are given by

pV 2A _V 2A

FL = 2 (%0+cL_)' F_ = ---5-c°'

where

F_ pV2A: _ (C_o+c_f)

1
1 1 C3_, + C._- _ =

a" + C1_' + V-2 C2_ + _ V-2 2Iy

-- 1 1 1

_"+ cj' • _ cfi + _ c,_' + _ c_ +
2I_

I pA
= --C D

Cl V Cl - 2m

0 (7.97)

o . (7.98)

1 pA

_ : _c_-_c_.

The coefficients are now considered as constants, based on the assumption that the aerodynamic derivatives are

invariant.

7.6.3.2 Axially Symraetric Bodies

To determine the differential equations of motion for axially symmetric bodies, we start with the Lagrangian

dynamic equations. The Lagrangian equations for small angles and constant roll rate (Equation (7.67)), rotated

to fixed-plane coordinates (and where Mm : CmPV2Al/2 is obtained from Equation (7.77)5, become

where _ : _E + i_Mz •

v- v ' (7.99)

(Equation (7 77)) have been written here as C m and
It should be noted that Cm_ p and Cm_ p . ap Cm&p,

which is the more common notation for those coefficients; for axisymmetric bodies, derivatives with respect

to _ or _ are equivalent. The same argument applies to writing Cmr p as Cmq p .

Transforming the forces given by (7.82) and (7,83) into y and z directions and including gravity and

Coriolis forces from (7.70) and (7.71), the linear momentum equations (7.24)-(7.26) become
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y"÷ i_"

/)V_A

2m CD

2m CLoc + ieLap

<o, ),--+ iCLq (Q +Jr) ++ c%p v v La+iCL:p V (,7+i-i)+

]

+ C D (V l - iT 2)J + ig - Px,_V(sin/J! + i cos _t sin O a) . (7. I00)

Here _i and _2 are the projections of the local flight path angle "y on the x-y and x-z planes, g is

the acceleration due to gravity, and the last term is the Coriolis acceleration. Combining (7,99), (7.100),

and (7.15) and making the following assumptions:

(i) Products of aerodynamic derivatives are small and may be neglected.

(ii) Multiple-term coefficients preceding the various derivatives of _R which are of the form (1 +a _ b .... ),

where a, b, etc. are <<1, are treated as just 1.

(iii) The quantity (pA/2m) CDL is much less than one. For cases with small roll rates where Magnus forces

and moments are not important, this can be relaxed to (pA/2m) (A/2_)C D

of the oscillatory motion and L is the length of the facility.

the equations of motion for axially symmetric bodies become:

d R- Hi& R- B2_ R :: 0 ,

where

B I =

H 2

<< I . Here, k is the wavelength

{., o,[.,2pVA -CLa -T V + (C_p-C,qp) +--2m + (Cmq+Cm&) + i -CLa p _'-

+ i--p
I

pV2A/ <Cma +. p/> pVA I_ ( pl )2l ,c,_o¥ -_T p CLap-:-iCL_ ,

(7.101)

(( '[2m CL_ + ICL_p V + CL_ ) +

pl 1+ i(CLap-CLQp) V (_ +i:) +

+ C D('/t-iV_)} + ig - 2_EV(sinO l +icos_isinO a) .

For clarity, the definitions of the derivatives appearing in the last two equations are as follows:

(7.102)

3C m
C = --

ms _C4 '
static moment-curve slope

bC m _C m

Cmq + Cm& : _(Q//V) + _(_4//V) '
damping-in-pitch derivative

_2C m

"Cm_p - 3C43(p//V) '
static Magnus moment coefficient

_2C m _3C m

Cm& p - C®qp - b(&UV) b(p//V) b(qt/V) _(pl/V) '
dynamic Magnus moment coefficient

_C L

CLot : _---_ , lift-curve slope

_C L 3C L

+ CL& - + ,CLq 3(Q//V) 3(_I/V)
lift derivative due to pitching and plunging
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_2C L

CLap _)C(_(p l/V) '
static Magnus force coefficient

_2C L _2C L

CI'_p - CLqp _(_I/V) _(pl/V) _(q_/V)_(pl/V) '
dynamic Magnus force coefficient.

Distance again proves to be a more convenient independent variable than time, since it eliminates (to second

order at least) the velocity from the equations. The transformation of (7.101) proceeds as follows:

% : x_ _ Vcos_ _ v_ (cos7_11

:d a :: V --+d_ :r --dV : V d2_.____dx + _, dZx
dt aR dt dx 2 dt aR6--_

: v_ ;'-c,_

p(t) Vp(x) .

Then (7.101) becomes

where

as

[_u_ pA F + i /)A _ -- (Cm_ p -Cmq p) + i -_ p 5_R
5_R [2m _ _m p! -CLap I

_ ph I E }t)hl (Cm_+ iCm_pPl) - (CLappl-iCb a) _R O,
t21 _T p =

(7,103)

, which is called the dynamic stability parameter for unpowered flight at constant altitude, is defined

ml 2

C D ¢ (Cmq + Cm&)_ CL_ -?-
(7.104)

h similar transformation applied to (7.102), again assuming W is small, leads to the following differential

equation:

" + iz't :- _ p_Ah2m{-(CLa + iCL_p p I) (_ + i_)Y +

+ I [(CLq+CL_) + i(CL_p-CLqp) pl] (_'+ i_')} +

ig+ V--_ - 2 (sinfll + icosO lsinfl a) . (7.105)

We will now allow for the possibility of small asymmetries.

7._.3.3 Small Asy_unetries

For the axially symmetric body case just considered, but with slight asymmetries in forces and moments which

.are body fixed, we can, following Nicolaides 7"s, simply add to the force and moment equations a terra which

rotates the asymmetry into the fixed-plane coordinates. The appropriate term to add to the right-hand side of

(7.103) is

2I Cm_ 2m V \

while the term to add to the right-hand side of (7.105) is

ph

2m CL_eSeeipX '
(7. 107)

where CLse and Cmse are the trim force and moment coefficients due to small asymmetries from, for example,

a flap deflection _e . If the body is externally axisymmetric but has a center of mass not on the axis of

external symmetry, then only Cms E would have a value.

Equations (7.103) and (7. 105), along with the additional terms given by (7.106) and (7. 107), represent the

equations normally used for analysis of axisymmetric bodies with small asymmetries. They are often referred

to as the tricyclic equations, a term which gives a physical description of the solution of (7.103) plus (7.106).
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7.5 DRAG ANALYSIS

Consider that a test has been conducted in a ballistic range and that time and distance data have been

obtained at a number of discrete observation stations. It is desired to determine the drag coefficient

governing the test model. We start with the momentum equation along the flight path, which is (neglecting

gravity)

d2_

m d-_ : F_ : - D

where _ is the distance traversed by the model c.g. and the drag, D, can be written

PA(d /'
D : 7\_/ %.

Note that the measured data are along the earth fixed axis, x, not along x .

by

x : r cos_ dl
eo

However, x is related to

or

_o _ dx
cos

where _ is the angle between the x axis and the flight path. Extracting the drag coefficient from time and

x-distance measurements using the above equations is a difficult task. In ballistic range testing, however,

T is normally less than a degree (1 ft swerve in 60 ft of travel). Hence, one can make the very good approxi-

mation that cost = 1, and thus x = x. The momentum equation can then be written

d2x dV _ pA

dt--: : dt 2m v2co
(7. 108a)

or

dV pA

- VC D . (7.108b)
dx 2m

This is the basic equation for determining the drag coefficient.

7.5.1 Case with Constant Coefficients

When the density, reference area, mass, and drag coefficient (AA,m, CD) are all constants, (7.108) can be

integrated in a straightforward manner. From (7.108a),

V o
V : (7.109a)

1 + VoKCD(t-to)

Alternately from (7.108b)

lOgeV = logeY o - KCb(x-xo) I

-KCD(X-I 0 ) F

V Voe , J

where K = pA/2m, and the initial conditions are t = t o , V = V o at x = x o.

(7.109b)

Integrating again yields

1 [eKCD(X-Xo ) I] (7.110)
t = t o + -- - .

VoKC D

Any of these equations can be used to determine the drag coefficient, and different simplifications are employed

which lead to varying degrees of accuracy. The simplest approaches will be considered first since they are

amenable to hand calculations and then more complicated ones suitable for high speed digital computers will be

discussed. (A brief discussion of drag determination is also given in Chapter 10, Section 10.2.3).

Method 1: The simpler methods are based on (7. 109) rather than (7.110), and begin by calculating the velocity.

The average velocity between stations i - 1 and i is given as

VAV : xi - xi-: (7.111)

t i - ti_ :

For small velocity loss, this average velocity may be assumed to occur at the center of the distance interval,

and the use of two adjacent intervals will give two velocities whose difference AV is a measure of the

deceleration. Thus, data from two such intervals may be substituted into (7.108b) in difference form
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Av

A-'x = - KVAvCD (7.112)

to calculate C n . Here VAV is the average velocity over the double interval of three measuring stations.

Method 2: More accurately, the velocities calculated using (7,111) may be used in (7.109b) which may be written

as

logeV - fogey 0 - KCDX , (7.113)

where x 0 has been arbitrarily set to zero. The slope of a plot of logeV versus x is -KC o . A least

squares fit (see Section 7.12) of this linear equation to the logeV versus x data will yield the drag

coefficient.

This approach still retains a small error in that the average velocity does not occur at the center of the

interval. The error can he almost entirely eliminated by a procedure suggested by Seiff 7"13. This procedure

is given next.

Method 3: First note that (7.109) and (7.110) can be combined to yield

At = - , (7. 114)

where Vf is the velocity at the end of an interval, V o is the velocity at the beginning of an interval,

and At is the time of flight over that interval. Next the average velocity for that interval is

Ax 1

VAV = A--t = KCBAX 1_ (7.115)

Now consider at what x position this average velocity occurs. Using (7.109),

: Vo O-KCDKAXVA v , (7.116)

where KAX is the x position in the interval (measured from the beginning of the interval) at which VAV

occurs (K=½ for constant deceleration). Combining (7.115) and (7.116) yields K as

K = l°ge - 1 l°ge Vff (7.117)

log e V--_°

Vf

This then represents the fraction of the interval Ax at which the average velocity occurs and hence the point

where V^v should be plotted.

To apply this result, K is first set equal to ½ . After the first approximation to the velocity-distance

curve is obtained, K can be evaluated for each interval and x positions adjusted accordingly. This new set

of data can be treated as before and iterated to convergence. (Normally, a single iteration is sufficient.)

This procedure is straightforward but requires precise calculation in evaluating K from (7.117).

Method 4: Another approach is to use (7.110) to obtain the drag coefficient directly from the time-distance

data. An approximate method for employing this equation is to expand the exponential and retain terms to

order x 2 . Thus, setting x 0 = 0 , we obtain

1 KC o .
t = t o + -- x +-- x 2 (7.118)

V o 2V o

A least-squares fit will then yield the drag coefficient.

Method 5: Equation (7.110) could also be used without any expansion approximations even though C u appears

in an exponent by using either a differential correction procedure or some other numerical procedure to minimize

the sum of the squares of the residuals of measured and calculated times at the given x locations. One method

of minimizing residuals is to fix the value of the drag coefficient (use approximate value of C D obtained from

applying Equation (7.118) to start with) and fit (7.110) to the x-t data by least-squares (this is straight-

forward) and obtain values for V o and t o . Next compute the sum of the squares of the time residuals, then

change the drag coefficient a small amount and repeat the process. If the sum of the squares of the residuals

increases, change the drag coefficient in the other direction and repeat the process. If the sum decreases

continue to change C D in the direction minimizing the sum of the squares of the residuals. Whenever the sum

increases, C D is changed in the other direction by a smaller increment. This process is assumed to converge

when the increment becomes smaller than some prescribed value.
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7.5.2 Cases with Variable Coe[ficients

7.5.2.1 Treatment of Drag Coefficient Dependent on Angle of Attack

At first glance it would appear that the drag coefficient determined assuming CD constant (Section 7.5.1)

would be of little value when C D depends on angle of attack. However, this is not the case. Reference 7.14

showed that for axially symmetric bodies with drag coefficients which are quadratically dependent on angle of

attack, i.e.,

CD := CDo+ CD_ _ , (7.119)

a mean line (to be described) through a plot of lOgeV versus x data determined an effective drag coefficient

CDeff given by

CUef f

Here Coo is the zero-angle drag coefficient,

_rms

C .2
: CD0 + DpC_ms -

C_R is the resultant angle of attack, and

(7.120)

From (7.119) and (7.120) then, it is seen that CDeff is that value of C D which occurs at a resultant angle

of attack equal to the root-mean-square resultant angle of attack of the flight in question. Therefore, for

each flight or flight segment one obtains a value for CDeff and _rms • If these points are plotted as

Coeff versus _2rms and a straight line is fit to them by least-squares, values for Ca0 and Co2 are obtained

and one then has an expression for CD versus angle of attack.

If the drag coefficient cannot be expressed as a quadratic function of angle of attack but is instead of the

form C D = CO0 4 Cun_ _ , then the angle of attack at which to plot the effective drag coefficient is 7"Is

C(rmn : Gta d

and

CDef f = CD0 + CDnC_m n -

The best value of n is found by a trial and error process.

A generalization of these ideas is possible.

ing or decreasing with angle of attack) and can be represented by

C D : + CDt_ _ + +CD 0 CDj_ ...

where the exponents i , j , etc. are arbitrary. If this is substituted for C O in

then

logeV = logeV o - K C o dx .

With the definition

l fox: -- C O dx + (_____mi)i_+ ()__rmj_j
CDeff x : CDo CDi CDj

The drag coefficient is assumed to be monotonic (either increas-

(7.121)

7.108b) and integrated once,

(7.122)

(7.123)

where

Equation (7,122) can be written

5¢rmi : 5(_ d etc. ,

logeV logeV o - x .:= KCDeff

Hence, a mean line through the logeV versus x data would yield CDerf

different values of angle of attack one could determine the coefficients

motion had been analyzed and the appropriate angles determined. The

cases of this approach.

(7.124)

and from several tests which had

CD 0 , CD i , etc. provided the angular

quadratic and n th power laws are special

The term mean line has appeared several times and needs to be defined. It can best be visualized by con-

sidering the logeV versus x plot in conjunction with an angle of attack versus x plot such as those shown

in Figure 7.7. For a drag coefficient which is monotonic with angle of attack the mean line which yields the

effective drag coefficient is that line which intersects the actual logeV curve at x positions corresponding

to maximum and minimum drag points and hence to the maximum and minimum angle-of-attack points as noted in the

figure.

Note that in the present formulation the mean line is straight; hence, the pitching motion is assumed not to

he excessively damped. Furthermore, in practice a least-square procedure is normally used to obtain Cveff and

this does not necessarily yield a mean line in the sense just described. It gives the mean line only if the

angular motion is undamped and the least-squares fit extends over a flight path of many cycles of oscillation.

For a half cycle of pitching motion, the result shown in Figure 7.8 occurs.
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The deviations are normally small for cases of practical interest, however. Some examples of the error

introduced by assuming that the least-squares line is the mean line have been obtained by numerical techniques.

It was assumed that the drag coefficient was quadratically dependent on angle of attack and that the drag

coefficient at zero angle of attack (Coo) was known exactly. The deduced value of CD2 was found to depend
on (i) the amount of damping present, (ii) the number of cycles of pitching motion, and (iii) the phase relation

of the pitching motion to, say, a sine wave. The ratio CD2 (deduced)/CD2 (actual) is shown in the following
table.

_J'f/_0 n : 0.5 n : 1 n : 2 n -- 3 n : 5

0.9

0.7

0.5

0.1

O. 70-1.30 0.92-1.08 0.98-1.02 0.99-1.01 0.99-1.00

O. 70-1.30 0.90-1.07 0.96-1.01 0.97-1.00 0.98-1.00

0.67-1.29 0.86-1.06 0.92-0.99 0.93-0.98 0.95-0.97

0.54-1.22 0.58-0.98 0.65-0.83 0.68-0.79 0.71-0.78

n : number of cycles of pitching motion

_f : angle-of-attack envelope at end of flight

s 0 = angle-of-attack envelope at start of flight

The quantity af/a0 is proportional to the damping. The range of the numbers tabulated for the CD2 ratio
extends from the smallest to largest obtained as the phase relation was varied between 0 ° and 90 °. Note that if

2 or more cycles of pitching motion are available and modest damping is present, the error introduced into CD2
is at most a few percent.

When the least-square curve fitting procedure is applied directly to the time-distance data rather than to

logeV versus distance data, the situation is more complicated. It cannot be shown exactly that the CDeff
concept carries over to this case since (7.108) cannot be integrated twice in closed form when the drag coeffi-

cient depends on angle-of-attack. However, for planar motion and small velocity loss the CDeff concept can
be proved valid. For quadratic drag, it can be shown to apply for nonplanar motion again assuming a small

velocity loss. Since in most cases of practical interest the velocity loss is small, the effective-drag-

coefficient concept is valid within the limits imposed by the small dumping restriction.

or

If CD
the distance versus time data must be differentiated three times to determine

this procedure will not yield accurate infom_ation.

7.5.2.2 Treatment of Variable Ambient Density

In counter-flow facilities, the model may encounter density variations along its flight path. Usually the

density variations encountered are not extreme, deviating perhaps -+20% from a given level. When this is the

case, a very accurate estimate of the drag coefficient can be obtained exactly as before but using the average
density over the length of the flight instead. That is

1 _h
PaY = _ Jo p(X) dx . (7. i25)

7.5.2.3 Treatment of Variable Model Mass

The problem of variable mass, which arises in the study of meteors, can also occur in the simulation of

meteoric events in the laboratory by use of models. (To a lesser degree, mass variations occur with any model

which ablates in flight.) The parameter of interest here is not the drag coefficient but rather the mass

loss rate. If the mass loss rate is small, the drag coefficient and model reference area may be assumed

constant. Further, it is assumed that the velocity of the mass leaving the body is small so that (7. 108) is

still applicable. Then differentiating (7. 108) with respect to time and rearranging yields

d V/dr }

: - pVACo- mdT/_
(7. 126)

2m dV d_V/dr_ m
V dt dt_/dt "

is known from another source, the first of these equations should be used. These equations indicate that
Unless the data are very good,

Given the functional dependence of the mass loss rate on velocity, one can obtain the mass loss rate more

accurately. Consider the function

= - kV , (7.127)

where k is a positive proportionality constant which depends on model material, size, and freestream density.

(This function approximates ablators with good convective heat transfer blockage at very high speeds.) Equation

(7.127) can be integrated, yielding

m - mo : - kx , (7.128)

where at x O, m : mo, V = Vo, and t : t o .
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restriction to small mass loss, the reference area and drag coefficient are again assumed constant.

Substituting the linear expression for m into (7.108) and integrating gives

V(k) pAcD/_k
-- = 1 - -- x (7.129)

V o m o

Integrating again yields

(k)l-(_'Aco/?k)l- -- x
m0 m0

t :: t o _ (7.130)

k( 1 - pACD \ k _AC D_V

For small mass loss this can be expanded _s _llows:

1 t)ACD x2 /_AC D ( _)x 3
t = t o +- x + MACD + -- ¢ ... (7. 131)

Vo 2moV 0 2 2moV 0\ 2m o 6

Note that this equation is the same as that derived previously for constant macs (Equation (7.118)) to the

order x 2 . The information defining k occurs in the x 3 (and hi_er order) terms. Hence, well-defined

data are again required, but less accur_y is needed than for the first method, since (7.131) uses the entire

run to dete_ine the coefficient k , while in the first method, the curvature in the velocity curve was con-

sidered locally.

In the event that the area changes importantly while the drag coefficient remains approximately constant

(e.g., the case of _ ablating meteor model with intemittent fl_ge build-up _d loss), one c_ deduce the

mass-loss rate, provided the area change is kno_ from shadowgraphs or other sources, by rearranging (7.108)

to yield

- ph(x)CDV(x )
m = (7.132)

2dV_x

Since all of the quantities on the right side of this equation are _own or meacurable at various points along.

the trajecto_, one can plot the mass versus time. The'slope of this curve is the mass loss rate. Again, this

slope involves effectively a third derivative of the time-dist_ce data.

7.5.3 Correction for Swerving Flight Path

The assumption that flight path distance, x , is equal to the distance along the x axis can be removed if

the swerving motion of the model center of gravity has been analyzed to yield a flight path distance. To first

order, an average value of I/cos_ is computed over each data interval and applied as follows:

(')
/_i i : /_XexPi _ AV i

(7.133)

where

AV Ax cos T

(7.134)

A good approximation to the flight path distance is then

f : _i 5_i . (7.135)

This correction is time consuming and usually unnecessary. It need be considered only in cases where the swerve

is very large, enough to significantly increase the total distance traveled.

7.6 STATIC AND DYNAMIC STABILITY ANALYSIS

A model designed so that its center of gravity is ahead of the center of pressure of the aerodynamic forces

will oscillate when in free-flight. Normally orthogonal shadowgraphs are taken at a number of stations alontg

the trajectory to define this oscillation. Frequently, small pins are included on the base of the model so

that the roll orientation (and hence roll _ate) can also be determined.

The types of motions obtained from ballistic range tests are many and varied. The easiest way to visualize

the motion is via a crossplot of the angle of attack versus the angle of sideslip (_ versus _). This is equiva-

lent to watching the path traced by the nose of the model on a plane normal to the velocity vector. Examples

of typical motions are shown in Figure 7.9. The upper left motion has essentially zero roll rate, the lower

right motion has a high roll rate. The roll rate present can be measured by the amount of precession of the

peak amplitudes.
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From a knowledge of the angle history experienced by the model, it is possible to deduce the static and

dynamic stability coefficients which governed the flight, h number of methods are available for doing this

and will be discussed in the following sections.

7.6.1 Determination from Wavelength and _plitude Variation

The first method to be considered is not sophisticated, but does lead to a good physical understanding of

the problem. The following assumptions will be made.

(i) Static restoring moment is linear with angle of attack.

(ii) Dynamic stability parameter is constant with angle of attack.

(iii) Aerodynamic coefficients are constant over the trajectory portion analyzed (small Mach number and

Reynolds nmnber changes or insensitivity of coefficients to Mach number and Reynolds number).

(iv) Motion is planar, which implies that the roll rate is zero. This assumption is introduced to simplify
the discussion, and will be dropped presently.

The static and dynamic stability parameters, Cma
in the maximum amplitude of the motion, respectively.

is appropriate under the assumptions listed (simplified version of Equation (7,103)):

where

and _ , are determined from the wavelength and the change

Consider the differential equation of angular motion that

_"- K_' - KsCmcta = 0 ,

ph

K = _m

: dynamic stability parameter (or damping parameter) for

unpowered flight at constant altitude

pal

Ks : 2--T

bC m
Cm_ - be( - static moment-curve slope.

(7.136)

Equation (7.136) is of the form

_" + 2_ t +w2_ = 0 , (7. 137)

which is the differential equation for damped simple harmonic motion. The solution to this equation is

: e -nx [AICOS (_2-_2)_X + A2 sin (_2-_2)_x] . (7.138)

I

Normally _ << w so the frequency can be approximated (_2__2)_ _ _ .

Prom (7.136) and (7.137) we can write

-2V -2V
: -- : (7.139)

K pAI2m

and

C
...w2 -2_2I

Ks ph I

The wavelength is
27T

)k -- --

dO

and Cm_ in terms of the wavelength becomes

-8_2I
C = . (7.140)

k2pAl

Note that this equation specifies that for linear aerodynamics (i.e., Cma = constant) the wavelength of the
motion does not depend on the amplitude.

Making use of (7,138) and Figure 7.10, it is seen that

at x z = 0 , C_l = h i

at x 2 = k, a_ = e-Vk(^LcosoJk+h2sinwh) ;
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but

No

Hence log e c_I_l = ..

_. = 2w/oJ,

Ct = e -nx (A 1cos 2_r+A 2 sin2w) : Ale-VX

C( A_e -nx

c-kI A I

_ (logarithmic decrement in amplitude)

In terms of _ , from (7.139),

which can also be written as

: _ _ log e -- . (7.141)

_2
log e --

: (7.142a)
(pA/4m)X '

a_ = _le (p^/"m)_ • (7.142b)

Hence, knowing the wave length and the amplitude ratio, the static and dynamic stability parameters can be

determined from (7.140) and (7.142).

Note that the dynamic stability parameter could also be determined using, for example, the ratio ta3/cll

together with the distance between these peaks. This is not as accurate as using the ratio from every other

peak due to the possibility that the model is oscillating about a trim angle of attack other than zero.

Assume next that the motion is not planar but the roll rate is small. The static and dynamic stability

parameters can be determined exactly as before except now the wave length and amplitude ratio are determined

from a plot of the resultant angle of attack (Ca) versus flight distance (note aR _ v/(a2 +f12)).

Now assume in addition an arbitrary (but near-constant) roll rate which is presumed known. The expression

for the static stability parameter is then given by the following equation, the first term of which is the same

as (7.140):

-8_21 2I (P _) 2c : _2pA------T +_ .

In this case, however, there is no simple expression like (7.142) for obtaining the dynamic stability parameter.

7.6.2 Determination from Angle of Attack Variation Near a Peak

The pitching moment coefficient (C m) and damping parameter (_) can also be determined by applying directly

the differential equation of motion and determining the angular accelerations from the angle of attack history.

This method can be applied to motions at all amplitudes (including tumbling motions) and is not limited to

linear aerodynamics. While the method of the previous section requires that more than a cycle of oscillatory

motion be defined, with three peak amplitudes to get dependable results, the method we will now present require,_

instead as many data points as possible in a quarter to half cycle of motion, preferably containing a peak

amplitude near its center. The assumptions made in this approach are:

(i) The Mash number or Reynolds number variations in the aerodynamic coefficients may be neglected.

(ii) The angular motion is accurately defined on both sides of a peak.

(iii) The motion is nearly planar. This assumption will be relaxed later.

The general differential equation of angular motion for planar flight is

a" = K(Cm) D + Ks(Cm) s ,

where

(Cm) D : dynamic pitching moment coefficient

(Cm) s : static pitching moment coefficient

pA
K = --

2m

pal

K s = __
2I

(7.143)

The half cycle of motion to be analyzed is represented in Figure 7.11 and can be considered as two segments,

divided by the peak, where _r = 0 . If there is damping in the system, the _(x) curves on either side of
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centerwill not be identical. The difference between the two curves is a measure of the damping. The shape

of the curves _z(x) and _2(x) will reveal the nature of the pitching moment which produced the resulting

motion.

We proceed as follows. Define

_1(x), x I _ x ( x c

_2(x) , x c < x < x 2

and at x -: x c

_' - O, CAI(x) = _2(x)

From (7.143)

_' = K(Cm) Dt + Zs(Cm)st T

J_' : K(Cm)D2 ÷ Ks(Cm)s2 •

At any given _ the static moments are identical, that is

: cAm .

(7.144)

Prom (7.144) then, at points of equal

or

(Cm)sz = (Cm)s2 : (Cm) s .

,

.... [(era) ol (era)D2]
_i + _2 K + + 2Ks(Cm) s

" + " K

(Cm)s CXI CX_ [(Cm)o ' + (era)n2 ] .
2K s 2K s

(7.145)

t!
Thus, from values of the angular accelerations c_z and c_2" , zf" we could either evaluate or neglect (Cm)Dz

and (Cm)D_ , we could readily compute values for (Cm) s . When the damping contributions to the total moment

are zero or negligible, that is (Cm)D 1 : (Cm)a_ = 0 , then

H : t! : _ tt0.1 cA2

and (7.145) reduces to

x to the _ versus x

Cms<X)

CA¢t

(Cm)s : -- . (7. 146)
Ks

An expression for C¢ = _(x) can be obtained by fitting a polynomial in data.

Differentiation of this expression twice yields values of cx" (x) which lead directly to through

(7. 1467. By plotting Cms versus C_ for common values of x, Cms(CO is obtained.

Real systems have some damping, which is in general proportional to the angular rate,

(Cm) a = _a_ ,

where _ is again the dynamic stability parameter.

On substituting (Cm)Ol : _ and (Cm)o2 : _ into (7.144) we get

_' : _[ + Ks(Cm)s_ }_" : KS_ ÷ Ks(C,)s22 '

Subtracting these equations for points at a common value of _ , remembering that

, we get

" " K_ ' '_t - _2 = (_1-_2) '

so that

(7.147)

(Cm)Sl : (Cm)s2 at a given

tt tl

: . CAI - 0:.2

Thus, the damping parameter can be calculated from the first and second derivatives of the angle of attack

variations with x at points of common amplitude on both sldes of the peak, c¢m .

(7.148)
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When the damping terms are retained, the static pitching moment is calculated as follows:

Equation (7.145) is written with the damping coefficients proportional to angular rate

is defined by (7.148) soBut

and we obtain

2K s 2K s

¢r _ r/ r_ r!

(c) s - (_/+_)
2K s 2Ks(_ ; -_)

_¢ ! rt t

c_ C_, - 6t,¢x2 (7. 149)

(c=)s - Ks(____)

The static and dynamic pitching moment coefficients can he obtained over a large angle of attack range by

this technique if the observed motion of _ versus x can be well represented mathematically. A polynomial

of the form c_ : A 1 + A2 x + A3 x2 + ... + AN xN-I is fitted by least squares to the 5( versus x data. At

each value of G( , there will be two (meaningful) values of _' and _", one for each side of the peak.

Substituting these values in (7. 148) and (7. 149) gives the desired results. The method is least accurate in

the low-angle portion of the c_ versus x curve where the acceleration is small and consequently the curvature

approaches zero. An improvement to the results can be made by first locating the point of (x' = 0 by least-

squares fitting the entire set of data. Then, two separate polynomials, one on each side of the peak, of the

form 6( - ¢/m -- A1 x2 + A2 x3 + "'" + ANxN+I can be given zero slope and the same peak amplitude at this point.

Assume now that the motion is not planar but that the roll rate is small. Equations (7. 148) and (7. 149)

then become

_tt -- C(I/ t2 _2
¢ = a_ a2 _Rl¢l - _-a2_2

K(0[_I _ C(_2) - _-_[1 :---_2 ) (7.150)

// I
C_a C_al_ C_,,C_ 2 ,2 _ ,2 ,C_R2¢2 C(RI - C_RI_I _R2

(Cm)s = - (7. 151)

Ks(a__-a_) Ks(_ -_)

where c_a again denotes the resultant angle of attack and ¢' is the rotation rate of the resultant-angle

vector in the c_-_ plane (Fig. 7.12). The subscripts 1 and 2 on c_R and 95' are interpreted exactly as in

Figure 7.11. At a given value of c_R on each side of the peak angle there will be corresponding values for

95; and _)_ just as there are for _x_ and ¢t_2 .

For motions governed by a linear static moment and constant dumping, one can analyze C_R(X) , _(X) , or /_(x)

separately and obtain equally valid results within the limits of experimental error in angle readings. For

motions governed by a nonlinear moment where the minimum c_s is more than about 20% of the peak c_a , only

the C(R(X) curve will yield meaningful results. However, since u s does not go to zero as in a planar case,

the range of _a values to be analyzed should not go beyond the inflection points on either side of the C(R(X)

curve.

The success of this method depends strongly on accurate angle readings. The damping coefficient is very

sensitive to random error. The static pitching moment coefficient is much less sensitive and sometimes can be

determined to a useful degree of accuracy even in the absence of a peak. However, without the motion history

on both sides of a peak, one has no way of determining the dynamic moment. An example showing application of

this method is given in Section 7.9.2.

7.6.3 Tricyclic Method

The methods discussed so far run into serious problems in cases where asymmetries are present or when an

unknown roll rate exists. These cases require the more complete tricyclic equations of motion for proper

treatment 7's'7'_6 In discussing the tricyclic method, projected angles as defined in Section 7.3.3 will be

used instead of modified Euler angles. To the order of the approximations that will be made, the two sets of

angles are essentially identical.

The important assumptions of this method are:

(i) Basic axial symmetry with only slight asymmetry due to, for example, a control surface or offset

center of mass.

(ii) Linear aerodynamics.

(iii) Constant roll rate.

(iv) Small angular displacements.

(v) Small linear displacements due to swerve.

(vi) Small velocity change.
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Thedifferentialequationof angularmotionhasbeengivenin (7.103)and(7.106)andis reproducedhereas
follows.

-"-I/)AL mPA[C_R --2m _ _ i 2-- p l - Iml2 -Cmq p) + i _' -CLap+ _-- (C=ap ]-P %

IpA, pA Z_ "_
[ 21 (Croci÷iCmappl) - _ I p (CLc_ppl-iCL a)j_R :

Re ipx , (7.152)

where ga = fl + i_

ml 2

and _ = C D - CLa + -_ (Cmq ÷ Cma ) .

Equation (7.152) can be written as

_R - (_1 ÷¢2)_R ÷ ¢1¢2_R = K3 (¢3-¢1) (¢3-42) e@3x (7. 153)

which has the solution

_R : Kt eCtx + K2 e¢2x + K3 ecax• (7.154)

This is called the tricyclic equation, since it is equivalent to three rotating vectors in the a-_ plane.

This is shown in Figure 7.13, with the following nomenclature defined:

41 - _1 + iwt K1 = bl + ial

42 : _2 - i_2 K 2 : b 2 4-ia_

43 : ip K3 : b 3 + ia 3 .

If we write the components of aR in (7.154) we get

fl : e vlx (b z cos wlx - at sin wlx) + e _2x (b 2 cosw2x + a 2 sinw2x) + (b 3 cos px - a 3 sin px)

a = e _ Ix (b Isinwlx+a Icosw_x) + e v2x (-b 2sinw2x+a 2cosw_x) + (basinpx+a 3cospx) .

Note that from (7.152) and (7.153) we get the expressions

ph #OA [ ml 2 ] I_41 ÷ ¢2 : _m _ ÷ i _ pl - CLa p ÷ -_- (C=c_p-Cmq p) ÷ i -T p

-#hl. ph I_

_1¢2 : _ (Cm_ ÷ iCmapP [) + --2m I p (CLapP l - iCLa)

Also,

We therefore have

K3 (¢3 -¢t) (43 -42) : R .

4_ +42 = V_ +% + i(%-%)

¢I¢2 = VlV2 + _% + i(_2_i-_1%) "

pA
(7.155)

pA [ m/2 (Cm_tp_Cmqp)] I__1 -co2 : -- pl +-- + T p2m - CLap I
(7,156)

-pAl ph I_
_1_2 + w:w 2 : + p21

2I Cm_ _m -I- CLap
(7.157)

-pA I_ pal

_l - _w = 2m I PCLa ---_-CmapP/ "
(7.158)

In order to obtain numerical values for the desired aerodynamic coefficients one must obtain the coefficients

in (7.154). A least squares procedure using differential corrections (described in the appendix) can be used to

fit (7.154) to the experimental data, a and _ , at various vaIues of x . The constants a_, a_, a3, b_, b_,

b 3 , _ . _, _ , and w_ are determined from the fit. .If one examines (7.155) thru (7.158), it will be noted

that there are more aerodynamic coefficients to be determined than there are equations, a seemingly impossible
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situation. However, for most ballistic range tests of aerodynamically stable projectiles launched from non-

rifled guns, the model experiences low roll rates and the Magnus terms can usually be ignored. It will be

shown later, after development of the displacement equations of motion, how some of these Magnus coefficients

can be obtained. When the Magnus terms are negligible, it is very simple to obtain the remaining coefficients.

From (7.155) the dynamic stability parameter _ is

while from (7.156) with
CL_p' Cm_p' Cmqp

_l + 72

pA/2m ' (7.159)

and 0
, Cmotp =

dOI -- CO2 = _- P .
(7.160)

Thus, the roll rate p is not an independent parameter but is fully determined by cz I and _ . From (7.157),

since Wl_2 << wicJ2, we obtain

Cm_ pAl (7.161)

Equation (7.158) indicates that CLa can be obtained from

T_I(JJ2 -- 7_2(_3i

CLa : pA I_ (7. 162)

__ _ p
2m I

However, the _'s and w's are usually not precise enough to define an accurate value of CL_ from this

expression. If CL_ can be obtained from the swerve (displacement of the model trajectory) then one can

express W2 as a function of _t, CL_ and p (Equations (7.160) and (7.162)):

(_ pA a) a)2 pA_ : 1 +_CL _-_ -_ CL_ •

We therefore have to determine only nine independent coefficients rather than eleven.

is known from experimental measurements of the model roll rate, then from (7.160)

(7.163)

For the case where p

w : _t - -_- P (7.164)

and as a result

,7, = , +; / (7.165)

Then _o 2 and _2 are functions of only oJ t and "Or and the measured values of p and CLc_, and only eight

unknown coefficients have to be determined.

7.6.3.1 Starting Solution

To initiate the least-squares-with-differential-corrections procedure, starting values for the unknown

coefficients must be provided. The method used is a modification of Proay's metbod 7"17. Fundamental to Prony's

metbod is the following theorem: If

(13÷iC() 1 : _. Kje Cjx/ , (7.166)
j=l

where

x : x 1 , x 2 .... x n (x locations of equally spaced points, k_x apart)

l : 1, 2 .... n (n = number of points, fl÷i_) ,

then _ + ia satisfies the linear difference equation

(iF+lot) i+ 3 + Q2(/7+ic()/+ 2 + Ql(fl+icOl+ l + Qo(_+i_) I : 0 ,

where Q's are constants such that the roots of h 3 + q2h 2 + Q_h + Q0 : 0 are

hj : eCjAx .

This minimizes

_'7.[(S7÷iO0l+ 3 + Q2Og+icx) l+2 + Ql(fl+ic()l+ i + %(?+i:)l] 2

(7.167)

(7.168)
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instead of

[(j_+ iC()measured _ (_ + iC_)calculated] 2 (7.169)

which means simply that the coefficients derived from the procedure are not the "best possible" coefficients

but are good first approximations. To obtain values for the coefficients Kj and _j , the first step is to

solve the following set of equations by the method of least squares for Q_, QI, and Qo (see Equation (7.167)).

With Q2' Q_, and

(fl+i:), + Q_(fl+i:) 3 + Q1(fl+i:) 2 + Q0(_+is): : 0 I

(_i:)_ + Q2(Z_i:).+ %(_+i:)3+ _(Z+i:)2 = 0

(;_+i:) n + Q2_+i:)n_ I + Q1(j3+i_)n_2 + Qo(J3+i:)n_ 3 = 0 .

Qo known, the cubic equation

(7. 170)

h3 + Q2h2 + QIh + Qo = 0 (7.171)

is solved for roots hl,h2, and h3, where

h z = e@zAx

h 2 = e_2Ax (7.172)

h 3 = e_3Ax .

and ¢3, which are substituted into (7.166) to obtain Kz ,K 2,

However, since _3 is not independent of eL and ¢2 for the

Then Equations (7,172) are solved for _l' _2

and K 3 by a second least squares operation.

tricyclic equation in question (i.e., p=f(_t,_2)_¢3=g(_1,¢2)) the procedure is slightly modified.

We assume initially that ¢3 = 0 and therefore h3 = e° = 1 . We therefore have

(_+i_) t = Zte _Ixt + K2e _2x! + K3

and h3 + Q2h2 + QIh + Q0 = 0 has unity as a root and we get 1 + Q_ + Qt + Q0 = 0 .

between this equation and (7.167), we have

[(_+i:)l+ 2 - (_4i:)/] Q2 + [(_+i:)l+1 - (_+i:)l]Ql = (fl+i:)l - (fl+i_)l+_ .

Qt and Q2 . _e exponentials

=0.

eT_is equation is now solved by least squares for the coefficients

2_x are now found to be the roots of

h2 + (Q_÷l)h + (Q_+Q_ + 1)

So from

h_ = e_Ax ]

;h2 = e_Ax

we can get ¢I and _ . From _ and _p we can calculate _3 using the expression

(7.173)

If we eliminate Qo

(7.174)

e_Ax and

(7.175)

(7.176)

I_(¢_)+ _(_)1= i L ,

The process is repeated with the new _b3where _ denotes the imaginary part.

essentially constant. The values of _j are then substituted into (7.166), and Kj solved for by a second

least-squares procedure. Since equally-spaced data are required for Prony's method, they are either computed

from the raw data using some interpolation scheme or obtained from hand fairings of the data.

until the coefficients remain

7.6.3:2 Swerve Corrections

In ballistic range tests the angular measurements are normally made with respect to an earth-fixed axis

system while the differential equations involve angles relative to the actual flight path. Hence a correction

to the angular measurements may he required for the swerving of the trajectory. These corrections (which are

usually small) can be computed by differentiating with respect to distance the z(x) and y(x) curves derived

from the tricyclic lift analysis (Section 7.7.3). Figure 7.14 shows the relationship of the swerve trajectory,

flight path angle, and measured angles in orthogonal planes.

dz
- _ + tan -_ __

dx

dy
Z = -V'+ tan-_ -

dx
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With this new set of angles the stability analysis could be performed again to give a better set of coeffi-

cients from the tricyclic analysis and then an iterative procedure set up between stability and lift analyses

to obtain the best solution possible (that is, one would iterate until the angle corrections remained essentially

constant).

7,6,3.3 Rotation of Coordinate Axes

One of the _sumptions necessary in the derivation of the tricyclic equation (7.154) is that angular displace-

ments are small so that the resultant angle of attack is simply the square root of the sum of the squares of the

pitch and yaw angles:

_R _'(_2 _/_,_) , (7.177)

The exact expression for the resultant angle of attack (with _ and /q regarded as projected angles) is

_a : tan-I_ (tan2_t tan2/_) . (7,178)

These two equations agree closely for small angles. They agree exactly if either _ or fi equals zero. Thus,

the error introduced by (7.177) can be reduced for near-planar motions by rotating the coordinate axes through

an angle _ to keep the angles in one plane small. To accomplish this, a peak amplitude near the middle of the

flight is rotated into either the pitch or yaw plane, establishing the angle _ , and then all data points are

rotated through this angle. This concept is illustrated in Figure 7.15.

The error due to using the tricyclie analysis at large amplitudes (without rotating the data) is most evident

in the dynamic stability parameter, ,_ . Figure 7.16 demonstrates the magnitude of errors that are encountered

for a typical case. Consider a test in a range which has 11 data stations at 1.22 meter intervals with test

conditions such that _)h/2m : 0.O02/m and the wavelength of oscillatory motion is 7.9 meters. Various values

of _ are considered at root-mean-square angles of attack of 20 ° , 30 °, and 40 ° for a planar motion with

= 45 ° (the worst case). The figure shows the induced error (_-_exact) as a function of _ for the three

values of _rms • Note the near linear dependence of the induced error on _ , and also the progressive

increase in the error with increasing _rms •

7.6,4 Nonlinear Static Restoring Moment

7._._.1 Introduction

One of the assumptions inherent in the tricyclic method (Section 7.6.3) is that the static pitching moment

varies linearly with angle of attack. This is usually a good assumption at smffll angles of attack, but may

not be true at larger angles of attack. In this section an examination will be made of nonlinear moments which

contain various terms from a power series in angle of attack (or in resultant angle of attack).

M = - _Mn_n+l (7.179)

The term represented by n :: 0 will be referred to as a linear moment, Similarly, n =: 2 will be called a

cubic moment; n - 4 , qutntic moment: etc. Care must be taken in using even powers of _ since they result

in a moment curve unsymmetrical about the origin. For axially symmetric bodies, we want a moment which is an

odd function of _ , and hence use even exponents in the form M3_3[_[ , etc. It will be shown that the

results from the tricyclie method previously developed can be used as a first step in finding the nonlinear

coefficients.

It is worthwhile to consider just how nonlinearities in the static moment can be detected in ballistic-range

data. These nonlinearities affect both the shape and frequency (or wavelength) of the model oscillation. It

is found, however, that moderate nonlinearities have only a second-order effect on the shape. In most instances

the resulting wave form differs very little from a damped sine wave. This is illustrated graphically in

Figure 7.17, where the wave form for a pure cubic moment (M:: -M2_) is compared to a sine wave having the same

wavelength. This comparison is for planar motion with zero damping. It should be noted that the wave form

corresponding to all nonlinear moments of the form M - M0_ - M2_ 3 , where both terms are stabilizing, would

fall between the two curves shown in this figure.

Hence, the primary means for detecting nonlinearities in the static moment is by observing changes in the

wavelength with amplitude of the pitching oscillation*. When the moment is nonlinear, the wavelength changes

with amplitude as a consequence of the change in the mean slope of the pitching moment curve, Cmc_ (see

Equation (7.140)). Normally, the aerodynamic damping is small so the wavelength of the model oscillation is

essentially constant during a given flight even though a nonlinear static moment exists. For this reason, a

number of flights of a giveu configuration must be made having different peak amplitudes before the form of

nonlinearity in the static moment can be determined.

h number of methods have been developed for analyzing ballistic-range data where a nonlinear static moment

exists. Some of these methods will be detailed in the following sections. For clarity, the discussion will

proceed from simple, very restricted systems toward a general solution with many of the restrictions dropped.

First, however, it is useful to illustrate the influence of nonlinear static moments by considering a mechanical

analogue.

* In at least one instance 7"18, the change in the wave form itself was used to determine the nonlinearities in the static

moment.



303

7._.6.2 Mechanical Analogue

The analogy between a spherical ball rolling over a contoured surface and the combined pitching and yawing

motion of a model in flight is developed in Reference 7.19. A necessary assumption is that zero gyroscopic

roll rate of the missile being simulated must be prescribed. Consider for simplicity an axially symmetric

configuration. Then construct a bowl according to the equation

or

z z o f hor _ + ApF '_ _ ....

dz

-- .... ,dr 2Aor i 4A2r3 +

where z is the height of the bowl surface and r is the distance from the bowl center, h ball rolling over

this bowl would execute a motion equivalent to the 5( versus _ motion of a model in free flight which was
governed by the static moment

Cm B0ot R ÷ B2ot _ t ... ,

where C m denotes the moment coefficient at a given resultant angle of attack. In other words, C m has the
dz

same form as -- .
dr

h number of bowls were made to check out the usefulness of this mechanical analogue. The contours of these

bowls, and the static moments they correspond to, are shown in Figure 7.18. The bowls were placed directly

below a motion-picture camera, and balls of different sizes and different materials were launched into them by

rolling the halls down a chute. It was found that the surfaces of the bowls could be oiled in varying amounts

to maintain a control on the damping in the system. Checks made with the "linear-moment" bowl, where an exact

analytic solution exists, showed the bowl analogy to be valid.

The real interest in this analogy lay in examining the effect of a nonlinear static moment. One set of

results for a linear-cubic moment where the linear term is destabilizing is shown in Figure 7.19. The two

components of the resultant angle of attack make little sense by themselves, but the cross-plot of ot versus fi

is completely understandable. The deflection away from the origin in this cross-plot is a characteristic of a

nonspinning configuration that is statically unstable at small angles of attack. This mechanical analogue can

often be helpful by intuitively revealing the type of static moment governing a particular model.

7.6.4.3 Static Moment Consisting of a Single _rrm

As an introduction to the treatment of nonlinear moments, we will consider a simple case where an exact

solution exists. Consider the case of a single degree of freedom in pitch (planar motion), no aerodynamic

damping, and a small velocity loss, and assume the static moment can be represented as

t)V2hl

M C m : - I n > 0 ,2 - Mn _:n÷
(7.180)

so that

-Mn(n _ 1)_n

Cm_ ½1_V2AI
(7. 181)

The equation of motion to be considered is

I_ ¢ Mnotn+l := 0 .

On multiplying this equation by _ and integrating, we obtain

(7.182)

I_ e MnC_n +2
--'_-- _ C .

2 n _2

To find C , we use the fact that & =- 0

and

We can determine _/4

that is,

when ot = _m " Thus

C - MnS_+2

n ÷ 2

dt = ((n+2) I_½( dot _ .

(where 7 is the period of the oscillation) by integrating (7. 183) from

/ \_fll_ C¢

-r /(nt2)I \_r m dot

(7. 183)

5(= 0 to 5( CAm;
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An expression for the period can be obtained in terms of gamma functions.

/n + 3\

I _\" rl--}
T = \n+2/ (7.18 )

This is an exact relationship that shows the effect of the coefficients assumed in (7.180) and the maximum angle

of attack• However, it does not provide much in the way of intuitive feel. This can be helped to some extent

by introducing the concept of an "effective" angle of attack. First, consider the experimenter's situation.

A number of firings have been made of a given configuration. The data have been analyzed an though the static

moment were linear and the moment-curve-slope obtained. It is found that the moment-curve-slope is not a

constant, but varies with the amplitude of the particular test. The question then arises, for what angles of

attack are each of the moment-curve-slopes obtained true local values? That is, what is the effective angle

of attack for each measurement?

_lving for Mn in (7.184) and substituting into (7.181) leads to the expression for Cmc ¢ ,

F p(n+ 3_ I 2

-27T(nl l)(nl-4)' I \n--_, I fCX'.X_X__ 2I

n + \_J _ •

L \_T2 2]2

For a linear moment, n = 0 and this equation reduces to (7.140):

-8_I

Cma _ Cmm / : .r2V_pA_
(7.186)

and (7.186), substituting _eff for

We define the effective angle of attack _eff

linear analysis of a motion of amplitude

in (7.185).

as that angle at which the moment-curve-slope obtained from a

matches Cma . To obtain this angle of attack, we equate (7.185)

Thus,

( [ + ''n
%. + 2 2/|k

= n.l)(n+4)2.,. T;TT?11%

\n + 21 aJ

(7.187)

This equation in effect gives the transformation from a plot of Cmal versus c_m to a plot of Cm_ versus _ ,

which can be integrated to obtain C m . Figure 7.20 shows a plot of _eff/C_m versus n . Note that for a cubic

moment (M = -M2_3), C_t should be applied at 0.489 _m' This value will also arise when a linear-plus-cubic
moment is considered.

The one-term moment represented by (7.180) has zero slope through the origin, and thus does not allow initial

static stability or instability at _ = 0 ° . Hence, this representation is not generally applicable, but was

included as a simple introductory case.

7.6.4._ Linear + Cubic Static Moment

Many real physical cases can be represented by the cubic case if a linear term is added to provide finite

static stability or instability about the origin. We will still assume undamped angular motion, with only a

small change in velocity, and consider a static moment represented by

pV2A/

M = C m = - M0_ - M2_ 3 (7.188)
2

2

Cmc _ P V2A/ (M 0 + 3M20(2 ) . (7. 189)

It should be noted that three cases of interest exist depending on the signs of M0 and M2 . These cases are

shown in Figure 7.21.

Note that we are considering cases where a model in free flight is oscillating between +cx m and -CC m .

For a type 1 moment, _m can be any value. For a type 2 moment, c_n must be less than C¢1 or tumbling will

occur, and for a type 3 moment, 0¢m must be greater than a2 (defined by I:_Mdcx= 0) or the oscillation

will take place about the trim angle (_) and never pass through zero.



305

Following the same approach as in the preceding section, we can obtain exact closed-form expressions for the

effective-angle parameter, _eff/am , in terms now of elliptic integrals. Defining m 2 = M2_/M o , these
expressions can be written as follows:

Type I and type 3 moments:

aef f : /(_2(1 +m 2) 1

_m _\12m_[K(k)] 2 3_ /
K(k) : complete elliptic integral of the first kind

(7.190)

Type 2 moment:

CXef f _ /(/772(2 +m 2) 1_c-xm _/\24m 2 [K(k)] 2 3m (7. 191)

k : -m_ .

These solutions are shown graphically in Figure 7.22. It is interesting to note that the value of 5¢eff/a m

obtained in the previous section for a pure cubic moment (0.489), is representative of nearly all linear-cubic

moments of both type 1 and type 3. In fact, except in the vicinity of the singular points for types 2 and 3,

a value of aeff/c _ of 0.5 would be a fairly close approximation.

What is most important to note at this point is that exact expressions have been obtained which allow a

transformation from C_x l (equivalent linear system) versus a m to a local Cmc_ versus a and the unknowns

Mo and M2 can be obtained from experimental data by a simple iteration procedure, which proceeds as follows:

Assume that C m and _:m have been obtained from a number of tests (e.g., using the tricyclic method)

First (neff) i zs assumed equal to [0.5 (am) i ] and a least squares fit is made to the equations

(Cmc_l)i :(-P---V-_)i [M° + 3M2(C(e_ff)il '

solving for M 0 and M 2 . Depending on the type of moment, either (7. 190) or (7. 191) is then applied to yield

better values of the transformation to apply to each of the (am) i and the least squares procedure is repeated.

It is found that the iteration process converges very rapidly for any of the three types of moment.

7.6.6.5 General Power-Serzes ]_ment

We will now relax some of the assumptions of the preceding sections and obtain an expression for the case of

a spinning synnnetric missile governed by an arbitrary nonlinear moment in the resultant angle of attack. It is

still assumed that aerodynamic damping is negligible and that there is no swerve of the flightpath; therefore,

a R _ O- .

We start with a body-fixed coordinate system denoted by x, y, z, with the origin at the center of gravity.

This system is related to the inertial coordinate system (x,y,z) by the Euler angles _u, _. and CE (see

Figure 7.23). The body has constant angular velocity p about the _ axis, We will consider that the restor-

ing moment is given by the expression

pV2AI

M(cr) : Cm 2 : - _ Mnan +I .
n

The moment is completely arbitrary in that any of the coefficients M may be set equal to zero*. Following
n

the development in Reference 7.8, it is found that the following differential equation governs the resultant

angle of attack _ .

_ : _ ; _ __ m + - o -n+_ (7. 192)
8 \dt// n + 2 cr2 2 _ 2 "n=o m - CT0 n=o

Here c_m and o 0 are the maximum and minimum resultant angles of attack, and the _n terms are the coeffi-

cients Mn modified to include the effect of spin. For the odd subscript terms (MI' M3"")' Mn _ Mn/I"

For the even subscript terms, a general expression for Mn is exceedingly complicated. In most practical

cases, however, the following expressions are essentially exact:

* It should be kept in mind that for the symmetric missile under consideration, the desired moment is an odd function of

angle of attack. Since _ ) 0 , this poses no problem but for planar motion, note that terms like Mz_l_l are implied.
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Mo Mo p2
I 4

M_ M2 P_

" I 12

M_ M_ 17 p_- __ + --

I 960

M>_

m>q -

I

where
I=

I

integrating (7.192) from o 0 to _m' an expression for the frequency of oscillation c_ be obtained.

_aluating the m sulting integral in closed form can be done only in special canes. However, an excellent

approximation for the frequency can be obtain_ 7.e"

£MnI_m*_+°_*_/_2+°_\(n+_)/2I_ 2 _--_--_;
8

n=O

w2(t) :: (___)2 (7.193)

This equation is least accurate for the case of planar motion. It _comes increasingly more accurate as more

and more circular motions are considered, and is exact in the limit of circular motion.

Because the equation is least accurate for pl_ar motion, it is interesting to compare it in this limit with

exit results and also with approximate results obtained by the Kryloff-Bogoliuboff technique 7'_° For planar

motion (_o-0, p=0), (7.193) _sumes the form

4 nZ=0 Mn [1 - (½)(n+,)/.] _ . (7.194)_3(t) : T = n +"--'-'2

_e first comparison will be for the one-term moment of arbitrary power in angle of att_k considered in Section

7.6.4.3 (i.e., M = -Mnan+l). This comparison is sho_ in Pi_re 7.24. It is seen that the approximation given

(7.194) is superior to the Kryloff-Bogoliuboff approximation for all values of n greater than 2. It

also agrees well with the exact results.

The other planar-motion comparison that will be shown is for a linear-cubic-quintic restoring moment:

M = - Mo_ - M2_ 3 - M._ 5 .

Exit results for this case are presented in Beference 7.21. _r brevity, only the particular moment having

stabilizing linear and quintic terms and a destabilizing cubic tem will be considered. The comparisons are

shown in the carpet plots (Fig. 7.25), where the dashes represent the exact solution _d the solid lines a given

approximation. Both approximations are fairly good, but results from (7.194) are clearly superior. Since (7.193)

is le_t accurate for planar motion, it is apparently a very _curate representation.

7.6._.6 Application to Free-Flight Data

Equation (7.193) shows the influence of maximum and minimum amplitudes, spinning rate, and an arbitrary set

of restoring moment coefficients on the frequency of the motion. Before applying this equation to free-flight

data, it is again convenient to transform from time to distance, which essentially removes velocity from the

problem. If (7.193) is divided by V _ and the terms of the series are written out explicitly, with only the

dominant spin term retained, we obtain

F

w2(x) _ p2(x) + I IM4 I-_ o

L
Recall that each of the unknown

of velocity. If we now define

Mn' s contains V2 (for example, Mo : -CmcJ.N_hl/2), so Mn/V2

-M n
Mn :

pV2Al/2 '

is independent

the Mn'S are coefficients in a power series in C m ,

Cm : _n+_ ,



307

and are assumed to be constants. Then the above equation becomes

5 2 2 5/27
°-5 + (7o

P2(x) fiAl i_ ° + e^
_,?(x) - 7

4 21 _MI -CT_ +_=- 0) J

+ _0_

+ :i_2 0 2 °-2 8^ 2
3 ( m + o ) 4 _M3 cy2_c_ _ 2 +6 m o)

I 9 / _ _\9/27
- .^i s

il] 2 2 2
+ TI_M. (7o-: + lOcy2cyS +7cro) + 7M5 ((7m_eYo) J +

]

+ 5_,(3%_+5_"_mo + _"mo+3%_)+ ....1 (7.195)

J
Prom a set of flights made at about the same test conditions, assume that a converged solution for each has

been obtained with the tricyclic method of analysis. Then values of all the parameters except Mn are known

for each flight for use in (7. 195). h decision as to the number of terms to be retained is made, and then the

Mn can be calculated from the set of m simultaneous equations (one for each test flight or portion thereof)

by the method of least squares, provided m > number of unknowns. Note that J(x) - [P_(x)/4] is essentially

equal to the product o)loJ given by the tricyclic analysis.

Although damping has been assumed negligible in deriving (7.195), the procedure still gives good results

when damping is present if values of (Tm and _0 are determined as follows:

(T2 I 0.2m : :[ m (first peak) +or 2 (last peak)]
m

2
(72 _ I [_0 z (first minimum) + o- o (last minimum)]0 _

The question of which and how many terms to retain in (7.195) would seem to be critical. The possibilities

are essentially unlimited, and there is no systematic way to make a choice a priori. Portunately, however, a

number of different assumed forms for the moment, when fit to the experimental data, turn out to yield nearly

identical, Cm(_) curves. Hence, there is no unique representation for the moment that gives the "best fit"

to the data but a number of choices which will give equally good fits.

This is illustrated by the following set of results, based on the experimental data of Reference 7.18. The

data showed large nonlinearities, and it was decided that a four-term series representation of the moment was

needed. The linear coefficient M0 ^was known from other sources and was not allowed to vary. All possible
^ ^ ^ ^ ^ ^

four-term moments, each containing M0 , and three members of the set (M1,M2,M3,Mu,Ms,M6) were fit to the

experimental data using (7. 195) and the method of least squares. The results are summarized as follows:

Powers of resultant

angle of attack Sum of the squares

in assunled moment of the residuals

1-2-3-4 3.5 × 10 -7

1-2-3-5 4, 9

1-2-3-6 6.6

1-2-3-7 8,5

1-2-4-5 6.6

1-2-4-6 8.4

1-2-4-7 10, 4

1-2-5-6 10.2

1-2-5-7 11.6

1-2-6-7 12.4

I-3-4-5 2.4 w

1-3-4-6 2.0 w

i-3-4-? i. 9w

I-3-5-6 1.8 w

1-3-5-7 2.0 w

1-3-6-7 3.2

1-4-5-6 8,4

1-4-5-7 11.3

1-4-6-7 17.3

I-5-6-7 32.0 × 10 -7
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Some of the moment representations have much larger error sums than others, and can be rejected as inferior.

However, among several of the better fits, there is little to choose. Figure 7.26 shows the envelope from the

five moments that gave the smallest sum of the squares of the residuals, marked in the above table with stars.

The moment curves are close enough together, out to a _ 36 ° , that no reat choice between them need be made.

7.6.5 Effect of Nonlinear Static Moment on Deduced Damping

The study of nonlinearities in aerodynamic moments has been extended in Reference 7.22 to allow nonlinearities

to exist in both the static moment and the damping moment, and nonlinear damping moments will be treated in the

next section. The study revealed that a nonlinear static moment could lead to apparent nonlinearities (and

large errors) in the deduced damping even when the actual damping was in fact linear. This effect will now be

discussed.

For this purpose, it is assumed that the motion is planar and that there is no swerve in the trajectory.

The equation of motion considered, with distance as the independent variable, is

Z Mn c_n+__tt + HoStt + __ : 0 . (7. 196)
n>.o IV 2

Note again that since Mn contains V 2 , Mn/V_ is independent of velocity. The constant H 0 (Ho=- (/)h/2m)_)

is a measure of the damping and we desire to determine its value. First, we consider the (idealized) case where

we have exact values of the angle of attack _m at every peak. If the static moment were linear, these peak

angles would fall on the exponential envelope e -(s0/2)x and the logarithmic decrement would be constant with

the value

[ (6Xm)k ] : 77H°2log e _ (7. 197)

where the subscript k denotes the peak number and _ is the frequency of the motion defined by

2 M0
_v2 - Mo H o ,_, -- .

IV 2 4 IV 2

The difficulty that arises is when the static moment is nonlinear, the logarithmic decrement is no longer a

constant. However, it is useful to analyze the data as though it were constant and an effective linear damping

Hoe is defined by the expression

[ (C(m) k :: 7r Hoe (7.198)
log e

l(_m)k+l 2 _l

where _l is now a function of _m' Mn' and H o , An approximate relationship between the apparent damping

and the actual damping, which is in excellent agreement with numerical integrations, is derived in Reference 7.22,

for arbitrary nonlinearities in both the static and damping moment and is expressed as the ratio of two power

series. The complete expression will be given later, but the expression for a linear plus cubic static moment

(and constant damping) is as follows*:

Hoe : m° _ (5/8)m2 . (7.199)

Ho mo + (15/16)m 2

Here m0 is +I if the linear static term is stabilizing and -1 if it is destabilizing. Note that the

definition of m 2 is now modified slightly, becoming

M2_ _
m 2

Mo

where _a represents an "average" value of the maximum angle of attack; i.e., _ _ ½[(_m)_ + (_m)_+l] . The

physical import of (7.199) is shown in Figures 7.27-7.29, which give the variation of Hoe/H 0 with m 2 . The

solid lines represent the case we are considering (exact knowledge of successive peak angles) and it is seen

that a significant effect on the deduced damping is introduced by the nonlinear static moment. For the stable-

stable case (Fig. 7.27), the deduced damping is always less than the true damping and in the most extreme case

(pure cubic moment), it is 2/3 of the true damping. Pot the stable-unstable case (Fig.7.28), the deduced damping

is always greater than the true damping. The largest deviations of the deduced damping from true values occur

with an unstable-stable static moment (Fig. 7.29), for which the error is never less than 33 percent.

It is, of course, unrealistic to presume exact knowledge of successive peak angles of attack. In the real

case, the damping would probably be obtained using the tricyclic solution developed earlier (Equation (7.154))

fitted to the discrete data points measured along the trajectory. Results obtained in this manner are indicated

by the circular symbols in Figures 7.27-7.29. To obtain these results, a number of exact trajectories were

generated for a variety of linear-cubic static moments and these "data" (50 points for each run) were analyzed

by the tricyclic method. There is scatter in the results, which is expected when discrete data are being

* h similar approximate formula was derived in Reference 7.23 and can he written

HOme : mo + (3/4)m 2

H0 m0 * (9/8)m 2

This proves to be less accurate than (7.199).



309

analyzed, but the results show consistent trends. For each of the three types of nonlinear moments, the dis-

crepancy from the true damping coefficient is greater than for the "'exact-data-at-every-peak" case. What is

noted is that the percent error is just about double that of the first case considered. Again the worst case

is that with an unstable-stable static moment. It appears that if a static moment of this type governs, the

deduced damping will differ from the true damping by a factor greater than 3. This statement holds whether

the motion is damped or undamped.

Por the case where exact values of the angle of attack are known at successive peaks, the true damping can

be derived by a procedure to be given in the following section. However, when discrete data are analyzed by

linear methods, no precise method exists to correct the deduced damping. An approximate correction would be

to double the error calculated by assuming the peaks known.

7.6.6 Nonlinear Damping Moment

7.6.6.1 Approximate Solution

Since the aerodynamic damping is one of the most difficult aerodynamic parameters to determine from ballistic-

range tests, the definition of _second-order" effects produced by nonlinearities in the damping is even more

difficult. An important reason for studying the subject has been developed by Tobak and Pearson 7"2_. who

indicate that static nonlinearity should be accompanied by nonlinear damping. There are, of course, ample

practical reasons for defining nonlinear damping in cases where the sign of the damping coefficient changes,

introducing limit cycles and other major effects on the motion. With the recent advances in shadowgraph optics

(particularly Kerr-cell shutters, see Chapter 6) and more sophisticated methods of reading the pictures obtained,

far better data are becoming available for analysis; this should lead to less scatter in the experimental results

and allow some coefficients previously lost in the scatter to be determined.

We will briefly consider nonlinear damping coefficients, confining the discussion to planar motion and zero

swerve. The differential equation considered is

n>o I-_
(7.200)

The middle term represents the damping moment, the last term, the static restoring moment. Note again that n = 2

will be referred to as a cubic moment, etc. As discussed in the previous section, if the static moment is non-

linear, the logarithmic decrement (determined from successive peaks) is not constant. We will consider that we

have exact data at every peak in the angle of attack, and that we will analyze the data as though the logarithmic

decrement were constant, which again introduces the concept of an "effective linear damping" (H0e). An approxi-

mate expression relating the effective linear damping to the linear term in the actual damping has been derived

in Reference 7.22 and is given as follows*:

where

and

The constants akn and bkn

aknmn
Ho e

H 0 /_ n_>O bknmn
k>o n.

=

MnC(n

m n
M o

are given in the following tables.

-- h k , (7.201)

k

Values of akn

0 1 2 3 4 5 6 7 8

2.0000 1.2732 1.0000 0.8488 0.7500 0.6791 0.6250 0.5821 0.5469

1.5349 1.0095 0.8065 0.6913 0.6143 0.5582 0.5147 0.4797 0.4510

1.2500 0.8398 0.6797 0.5875 0.5250 0.4788 0.4428 0.4136 0.3895

1.0568 0.7208 0.5894 0.5130 0.4608 0.4218 0.3912 0.3663 0.3453

0.9167 0.6323 0.5213 0.4565 0.4118 0.3784 0.3519 0,3301 0.3118

0.8102 0.5639 0.4679 0.4118 0.3731 0.3439 0.3206 0.3014 0.2851

0.7266 0.5092 0.4249 0.3756 0.3415 0.3156 0.2950 0.2779 0.2633

0.6589 0.4645 0.3894 0.3456 0.3152 0.2920 0.2735 0.2581 0.2450

0.6031 0.4272 0.3596 0.3202 0.2928 0.2720 0.2552 O. 2413 0.2294

0 0 0 0 0 0 0 0 0

* Note that (7,199) is a special case of this expression.
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Values of bkn

0 1 2 3 4 5 6 7 8
k

n

I, 0000 1. 0000 1. 0000 1. 0000 1. 0000 1. 0000 1. 0000 1. 0000 1. 0000

O. 9593 O. 9575 O. 9542 O. 9505 O. 9468 O. 9434 O. 9399 O. 9364 O. 9337

O. 9375 0. 9346 0. 9297 0. 9243 0.9188 0.9135 0. 9084 O. 9038 0. 8997

0.9247 0.9211 0.9155 0.9091 0.9027 0.8964 0.8905 0.8850 0.8797

0. 9167 0.9127 0. 9067 0. 8998 0,8929 O. 8861 0. 8797 0. 8735 O. 8677

0.9115 0.9073 0.9011 0.8940 0.8868 0.8798 0, 8729 0.8665 0.8603

O. 9082 O. 9039 O. 8975 0. 8904 0. 8831 0. 8758 0. 8688 0. 8621 O. 8558

0. 9060 0. 9016 O. 8953 0. 8882 0. 8808 0. 8735 O. 8664 0. 8596 0. 8530

0. 9047 O. 9003 0. 8940 0. 8868 0. 8795 0. 8722 0. 8650 0. 8582 O. 8516

1.0 1.0 1.0 l.O 1.0 1.0 ].0 1.0 1.0

An example of what this equation looks like in expanded form is given as follows, where all terms relating

to a 1-3-5 static moment together with a 1-3-5 damping moment have been retained.

Hoe m o + 0.6250m 2 + 0.4583m. m e + 0.6797m 2 t 0.5213m_
-- : + h 2 +

H o mo + 0.9375m 2 + 0.9167m_ m o + 0.9297m 2 ÷ 0.9067m_

0.7500m o + 0.5250m 2 + 0.4118 my
+ h_ . (7.202)

mc + O.9188m 2 + 0.8929m_

Equation (7.201) has been compared with the results from numerical integrations for many different nonlineari-

ties in both the static and dynamic moments 7"22. In all cases investigated, the approximate formula yielded

results extremely close to the "exact" result. Of concern now is how the coefficients (Mn,H n) in (7.200) can be

extracted from experimental data.

7.6.6.2 Determination of Nonlinear Damping Paraaeters from Data

Equation (7.201) can be useful in determining the nonlinear damping parameters from a set of observed oscilla-

tions. Assume that a given oscillator is governed by (7.200). We wish to infer from observed oscillations the

appropriate values of H o .H e , H. .... and M0 , Me , M_ .....

We assume that the frequency ahd maximum amplitudes for every half cycle of motion from each model flight can

be accurately determined from the data. The effective linear damping for each half cycle is then computed by

2w (_m) k .

Ho e = _- log e (_m)k+l (7.203)

In addition, we assume that the damping is small so that H0_,J << 1 . This m_sumption is normally satisfied in

ballistic-range testing, and allows the simplification that the damping can he neglected in determining the

static-moment parameters Mn .

By use of the approximation for the frequency developed earlier (Equation (7.194) transformed to distance),

we can write

Mo _ Mn
_,)e (X)

z __ + _ An __ _n (7.204)
iV e iV 2 a '

n>o

where

4 (_)(n+_)/2]
An - [I -

ni2

This formula is a good approximation for large and small nonlinearities, except in the vicinity of the singular

points of static instability. By fitting this equation to a set of frequency versus amplitude data, the appro-

priate values of Mn can be obtained.

A similar but slightly more complicated situation exists for determining the damping parameters Hn . In

this case, the static parameters play an important role, whereas in the determination of the static-moment

parameters Mn , the effect of the damping parameters can be neglected. Rewriting (7.201) in a slightly

different form, Ho e is given by
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Hoe : BoHo + k_>o BkHkC_ak ,
(7.205)

where Bk (k > O) is

aknMnC_ n
1 n>-o

B k = _
2+k

_1 bknM._
n>_O

Equation (7.205) is analogous in form to (7.204). In this case, however, the coefficients B k are functions

of M 0 , M I , M_ ....... and _a ' whereas the coefficients A n were constants. In the determination of the

damping, however, the static parameters can be regarded as already determined by the use of (7.204). Hence,

the coefficients B n are functions of only _a insofar as determination of the damping is concerned.

It is now useful to divide both sides of (7.205) by B o , obtaining

Hoe - Ho + Z Bk Hk_k "
Bo _o

(7.206)

Because B o . B I , B 2 .... all vary with _a in a similar manner, the ratios Bk/B 0 vary slowly with a a .

Equation (7.206) can now be used to study a set of damping data in a manner analogous to studying frequency

data with (7.204).

As a simple example, consider that a set of data for a given oscillator has been obtained and that the static

moment, completely arbitrary, has been determined with the use of (7.204). Assume that the damping moment can

be described by a linear term and a single arbitrary nonlinear term so that (7.206) appears as

B n
Hoe : Ho + (7.207)

where n is not known. Choosing a particular value of n determines Bn/B ° . Then on a plot of Hoe/B ° versus

(Bn/B o)a_, when the right value of n is chosen, the data will fall on a straight line. The slope of the line

yields H n , and the intercept of the line with the H0e/B 0 axis yields Ho . This will be true without regard

to the particulax form of the static moment.

For an arbitrary damping moment described by a given set of data over an amplitude range, there may be many

combinations of the parameters H 0 ,HI,H 2 ..... that will fit the data. This situation also occurred in

determining the static-moment parameters. One must often settle for a member of a class of moments that gives

a good fit. Thus, a certain amount of experience is useful in analyzing the data. For a set of data including

(or as a
small angles of a a as well as large, one should plot the damping data as Hoe/B o versus (BJBo)a a

first try against a_ since BJB o varies slowly with _a). If the data fall on a straight line, the damping moment

is a cubic as described by (7.207) with n = 2 . If the data deviate from a straight line, which might be

expected to occur at larger values of a a , one can estimate the magnitude and sign of the next higher order

damping term needed to fit the data. In such a manner the appropriate form of damping polynomial tends to

suggest itself.

7.7 LIFT ANALYSIS

A model in free-flight normally develops lift which causes the center of gravity to follow a trajectory that

deviates from a straight line. For airplane-like configurations, this is often troublesome in that the lift

can cause the model to quickly fly out of the field of view. Even for axisymmetric bodies the lift usually

causes the model to depart from bore sight of the gun. This can be explained as follows. Consider the simpli-

fied form of (7.105)

z" _PAC. _ (7.208)
= 2 m U_ '

where Ctex is the lift-curve slope. Now assume for simplicity that the model emerges from the gun at zero angle

of attack but is given an angular rate during separation from the sabot. A simple form for the angle of attack

that satisfies these conditions is

a = amSin_x .

Substituting this expression into (7.208) and integrating twice yields

pA ctm

z = 2--m CLc_ sinwx + Clx + C_ .

(7,209)

If we make the initial conditions z : z' = 0 at x = 0 , then

pA a m pA a m
= ..... x (7.210)

z 2m CL_ o; 2 sin _X 2m CL_ w "
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This equation indicates that even with zero vertical velocity upon emerging from the gun, a vertical velocity

is acquired due to the lift. For this simplified case, the center of gravity oscillates about a straight line

in phase with the angle of attack as shown in Pigure 7.30. The presence of aerodynamic damping, gravity, etc.

would cause the swerve oscillation to take place about a curved line. What is important to note here is that

the magnitude of the deviation from some mean line is a measure of the lift. We will now consider various

methods for determining the lift coefficient.

7.7.1 Determination from Displacement Variation Near a Peak

The most basic method for determining the lift coefficient as a function of angle of attack is by analysis

of the lateral displacement history of the model mass center (which is caused by the lift). The deduced

lateral acceleration is related to the angle of attack history to define CL(_) . For motions involving a
small roll rate, an approach similar to that used for determining the moment coefficient in Section 7.6.2 can

be used. For a planar motion in the x-z plane (ignoring gravity), the differential equation of motion is

where

z" = - K/(CL)D - K(CL)s,

(CL) D = dynamic lift coefficient

(CL) s : static lift coefficient

K = pA/2m .

(7.211)

As with the angle of attack data, a desirable segment of vertical displacement data is one which brackets a

peak deviation, and which can be considered as two sets of data about this maximum or peak. (The swerving

motion peaks at very nearly the same x position as the angular motion; they peak at exactly the same x if

damping is zero.)

The development of the equations is exactly analogous to that for angles and we have, at any given a ,

---- r? tt
-(CL) s zt + Z2 [(CL)Dz + (Cu) D2] . (7.212)

2K 2

If we assume that
(CL) D : (CLq+CL_)C( t we have

" + " l

-(CL)s = Z12KZ2 2 (CLq+cLa)(a[ + _) " (7.213)

Usually, the contribution of the dynamic term to the lift coefficient is very small. Tnerefore, when z_' and

z_' are determined (for points of equal angle of attack on either side of the peak), (CL) s is effectively
determined. If damping in lift is truly negligible, the two values of z" are nearly identical. The deduced

instantaneous values of (CL) s are plotted against the instantaneous corresponding angles of attack to generate

a curve of eL(a) . An example showing results from this method is given in Section 7.9.2.

7.7.2 Norml Force from Stability Data on Models with Different Centers of Mass

The normal-force-curve slope, CNa (CN _CLa+ Cs), and the center of pressure location, Xcp , are often
found by testing models of fixed externa_ shape but with two different (known) center of mass locations. The

two bodies would have the same values of C N and xc , but the moment-curve slope, C®a , would be different.

Values of Cma can be obtained experimental_y for eac_ of the bodies by methods already described. Then using

the relationship between Cm and CN ,

c (Xcg-xc_)Cm_ = N_ _ . , (7.214)

where l is the reference length, we have a pair of simultaneous equations for the two unknowns, CNa and Zcp .

7.7.3 Tricyclic Method

When the angular motion is not planar and involves precession due to spin, the tricyelic method discussed

in Section 7.6.3 can be used for the analysis of the swerve and the determination of lift coefficients. A

trim lift force may be included in this analysis, defined as follows:

Cy ° lift coefficient in y direction for _ : 0 at x : 0

CLo lift coefficient in z direction for _ = 0 at x = 0 .

_ese are components of the CL_ term in (7.107). They rotate with the body at a rate, p , and their
resultant represents the force a_ zero angle of attack due to small asymmetries in the model.
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The equation for displacement acceleration is (see Equation (7. 105))

Y " + iZ " : - K {(CLa ÷ iCLc_p pl) (_ + ic() + I [(CLo + CL_¢) + i (CL_ p - CLqp) pl] (/_' + iCA') f (Cy 0 + iCL0) e ipx} +

÷ ig/V _ - 2 c_ (sin_?l +ic°s_lsin_a) .
V

(7.215)

Note that the lift coefficients due to Magnus effects (CLap, CL_p, CLqp) are retained in this equation, but are

exceedingly difficult to obtain experimentally unless very high roll rates are experienced. If these coeffi-

cients can be obtained, moment coefficients due to Magnus effects can be found from the stability analysis.

If we now integrate the above equation twice with respect to x we obtain

{ /_' /0= (Z+i_) dxdx + ipZ f0' f: (?+i_) dxdx +Y + iz : - K CL_ CL_ p

+ I(CL +CL_ ) fox (/3+ia)dx- /(C L +CL_c)(_o+iao)X ÷
q q

+ iPZ2(cLap-c%,) _o"(Z+i_) dx- ipl2(CLa-C,.q)(Zo+i%)x ÷

I ')}I + ipx - e Ip

+ (Cy0+iCL o) p2 + (Yo+iZo)x +

+ (Yo + izo) + i _ dx dx -

- 2 -- (sin _l + i cos _l sin _a ) -- dx dx
V o V

which, after terms are rearranged, becomes

Y + iz : -K I(CLa+Ip/CLc_p) _o_ fXo (_÷iCx) dxdx +

The term

-CLq p) fox (fl+ia) dx - (_o+iao)X +

(' )i+ ipx- e_px. ÷ (Yo+iz_)x ÷
+ (Cy°+ ic%) p2

+ (Yo+iZo) + ig _-dxdx -

- 2wE (sinOl+icos_tsinOa) f_f_ V°V'-o --_ dx dx .

ig _-5 dxdx

is the displacement in the vertical plane due to gravity. It can be calculated separately and added to z

algebraically. If the precise flight time is known for a specific x location, the displacement due to

gravity is simply Zg = _gt 2 . The Coriolis term can be integrated directly since

(7.109)). The result is

_e [e KcOx : KCDx - I)- 2--Vo (sin_l +ic°s_Isin_a )\ (KCD)2

and for small KC o

This contribution to y and

data.

Vo/V : e KcDx (Equation

e KCDx - KCDX - 1 _ X 2

(KCB)2 - 2

z can also be calculated separately and added algebraically to the y

(7.216)

(7.218)

and z

(7.217)
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If theMagnus terms are ignored, there are eight unknown coefficients in (7.216): CLa,(CLq÷CL&),Cyo, CL o ,

Y0'' Yo , z0/ , and z o . All of these coefficients appear in a linear fashion and if the integrals of (_÷i_) can

be calculated in closed form and p is known, then the coefficients can be solved for by a standard least squares

technique. The expressions for (8+ i_) can he obtained in closed form from fitting (7.154) to the angle data in

obtaining the static and dynamic stability. The roll rate p is also known from the stability reduction.

Some of the Magnus coefficients can now be found by using the stability and lift analyses together, provided

the data are accurate and well-defined. From (7.216), values for CLa p and (C[_ -CL p) can be obtained from
• P q W

a least-squares fit since they occur linearly as do the other coefficients. Then from (7.158), given CL_ , e

can calculate C®ap . With (7.157), given CL_ p , we can calculate a slightly modified value of Cm_ . With

(7.156), given C_x , we can obtain (C_p-Cmq). Therefore, from tile combined stability and lift analyses, we

can derive all of t_e following coefficients: _, Cm_, Cl_x, Cmq + Cm&, CLq + CL&, C_(xp ,Ct_xp, C_p - Cmq p,

:oC_ ' Cy o
CL&p , and CL 0 . For most ballistic range tests, however, the models are fired from smooth-bore

guns _t the roll rates are small and the Magnus terms are negligible.

It is also possible to deduce the center of pressure, Xcp , and normal-force-curve slope,
ments of a single model flight which define the lift, drag, and static stability coefficients.

and, as noted earlier,

so that

CNa _ CL_ ÷ C D

Xcp _ Xcg Cm____

l _ CL(x + C D

CNa , from measure-
For small ang}es

7.7.4 Nonlinear Lift

Another method for obtaining the lift coefficient, which can handle a case involving nonlinear lift, proceeds

as follows. The lift coefficient is expressed as a polynomial in resultant angle of attack, _a , as

C L = ._" CL_i_ . (7.219)
l=l

For simplicity in demonstration, we will use the two-term series

C L : C_J a + Cua3_ _ . (7.220)

In the _-_ plane, with the y and z coordinate axes also shown, we define an angle ¢ (see Figure 7.31)

as the angle between the resultant angle of attack c_ and the fl (or -y) axis. The lift in the z direction

is

CL z : C a sin ¢ = CL_Rsin ¢ + CL_3_sin _

and in the y direction

(7.221)

C Ly : C L cos_ : CLa a cos(_ + CL_ _a_ cos_ . (7. 222)

The differential equations of motion (with no damping) in the z and y directions are

g

z " :: - KC L + V _ (7. 223)
z

,, : _ KC LY
y

where K : pA/2m and g is the acceleration due to gravity.

equations, we gel

z" = K (C L _Rsin@_ C L a_sin@) _ g/Y ?
5 3

Y" : - K (CLaaeCOSC#÷eLaa_cos_) .

Integrating twice with respect to x we obtain

(7.224)

Substituting (7.221) and (7.222) into these

(7.225)

gt 2

I: I x _o: f(;c _sin_/ dxdx _ -Z 0 ÷ Z_X - KCL_ 'b_Rsin(/) dxdx - KCIa _ :J'Ro ' 2

(7.226)

(7.227)

x x x x
l x (7.228)
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At each data station there are measured values for a,_, y , z ; _a can be calculated from

and _ can be obtained from

¢ : tan-I (a/_) .

Thus, agSin¢, aacos_, a_sin¢, and a_cos¢ can be plotted as functions of x and integrated graphically.

With the integrals determined, a least squares technique can be used to find best values for all of the unknowns
in (7,227) and (7.228).

7.8 NUMERICAL INTEGRATION OF EQUATIONS OF MOTION

The tricyclic method described earlier has been the most widely used means for obtaining aerodynamic coeffi-

cients from free-flight tests. Within the realm where the assumptions made in the derivation of the tricyclic

equations were satisfied, the method was convenient and gave good results. Even when the assumptions were not

satisfied, this method was normally applied first, and then the results were modified by some of the methods
that have been described.

It is easy to see how this strong dependence on the tricyclic equations came about. The problem was to deduce

the aerodynamic characteristics governing a body from discrete observations of its position and attitude in space.

The complete differential equations governing the motion were presumed known. Since errors were certain to

exist in the position and attitude data, a "best fit" of some kind was called for, preferably an iteration scheme

that would search for this fit. A least-squares fit was the natural choice, and with it a differential correction

technique would have to be used. For this to work, however, partial derivatives of each dependent variable

(e.g. a,_,y,z ..... ) with respect to each unknown coefficient in the differential equations of motion had to be
known at every data station.

At that period in time, electronic computers were too slow to consider numerical determination of these partial

derivatives. The remaining choice was to get a closed-form solution (e.g. a =f(x)) so that the various partial
derivatives would also have closed-form expressions. A least-squares fit is then straightforward, although

convergence of the iteration procedure cannot be guaranteed. The tricyclic equations are the implementation of

this approach. Enough approximations and assumptions are introduced into the differential equations of motion
so that a closed-form solution can be obtained.

It would be beneficial if the need for having a closed-form solution could be by-passed, and the data fit

instead by numerical solutions to the differential equations. This would allow far more generality in the

problem of obtaining the aerodynamic coefficients because, at least theoretically, the exact differential

equations of motion could be used. Two such methods will be described, The first (Section 7.8.1) is an

approximate method which has been successfully applied in the past to small-amplitude motions of airplane-type

configurations z'2s. It does not require a very sophisticated computer, but does have the drawback that it

yields results which cannot be improved except by trial and error. The second method described (Section 7.8.2)

eliminates this drawback by providing an iterative scheme for seeking the "best fit" to experimental data 7"26.

In this case a high-speed digital computer is essential. In practice, the first method can be used to obtain

a starting solution for the more powerful second approach.

7.8.1 Approximate Method

In Section 7.4.3.1 we obtained a set of differential equations to describe the motion of airplane-type

configurations (Equations (7.95)-(7.98)). Simplifying the nomenclature, these equations appear essentially as
follows:

y" : B,y' + B2_sinqb ÷ B3_cos _ (7.229)

z" - Blz' - B2_cos_b + B3/_sin¢ (7.230)

_,i _ B,_ _ ÷ 85_ + B_/_ r + B7fi + Bs (7.231)

/_r_ : Bg_r + Blo_ + BI_t _ + Bl2_ + 8t_ . (7.232)

Here ¢ is the angle of roll about the model's _ axis measured from the pitch plane (see Figure 7.2b).

Presumably it is a known function of distance. These four equations form the basis for determining the aero-

dynamic coefficients from the flight records. The following results are obtained after integrating twice with
respect to distance (_ and _ are dummy variables):

Io IoI: EEx x d?7 dw /_COSq5 d_y(x) : yo _ (y_ _BtY0)X _ B j y d_ + B_ _,sin4bd_ + B3 (7.233)
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= + + + Bs 2 (7. 235)

f: f: I; " S: f; "'fi(x) = _0 + (/_-o+B_0+B11_0)x ¢B9 Z d_7+Bx0 d_) Zd_ + BixIo _dv) 4 B12 d_ _d_÷B132.(7.236)

TO accurately evaluate the integrands in the above equations, a continuous history of _. and F must be

obtained. Since the basic data _bME, OME,q_, y , z are obtained only at discrete points along the trajectory,

it must be assumed that a faired curve drawn through these observed points represents the true continuous

trajectory of the model. For any x position, the angle of attack, _ , and the angle of sideslip, /_, can

then be determined from the observed parameters by use of the relationships defined in Figure 7.4.

- (OME+Z') COSq_ + (@ME--y') sine (7.237)

= - (_bMz-y') cosq5 + (OME÷Z') sin_ . (7.238)

This method of obtaining a continuous record of _ and _ is considered to be more accurate than to transform

the measured points into _ and j_ and then fair the points.

Sets of redundant simultaneous equations are obtained by evaluating each of the equations (7.233) thru (7.236)

at a number of x locations; since the required coefficients appear in a linear fashion, a straightforward

application of a least-squares technique can be used to solve for them.

7.8.2 Iterative Approach TM

As mentioned earlier, for a least-squares fit employing differential corrections to succeed, partial deriva-

tives of each dependent variable with respect to every unknown coefficient must be known accurately at every

data station. The problem of obtaining these partial derivatives can he successfully handled by the method of

parametric differentiation. To illustrate the procedure, assume that the equations of motion governing a

particular configuration are the two coupled nonlinear differential equations

a"+ Cl_r + C2_ + C3a3 + Cu_' = 0 _ (7.239)

f"+ c_' + c_f + c_p_ - c._' = 0. J
Note that C_ is related to the damping moment, C 2 and C 3 define a linear-cubic static moment, and C_ is
related to the roll rate.

The initial conditions at x = 0 are

_(0) = C s

a'(O) = C6

fl(0)= c_

fl'(O) = c 8 .

We wast to determine the four aerodynamic parameters (C l to C,) and the four initial conditions such that we
obtain a least-squares fit to experimental a(x) and _(x) data. The method of differential corrections

will be used to do this (described in the Appendix). )_ssume that initial values of the unknowns, required

to start the differential correction procedure, are available (previous section). Next we need the partial

derivatives of both a and _ with respect to the eight unknowns. No closed-form solution exists for these

derivatives, but they can be obtained numerically by the method of parametmc differentiation. First define

the following notation:

Pi : _C_ ' Pi = _--x = _C_ ' Pi' = Dx_ _C i

Qi = _c]' Q_ : T; : _c-T' Q;' :

Note that it is explicitly assumed here that the order of differentiation can be reversed and that

% = < t N) etc.
For well-behaved functions, this is normally true. Now differentiate (7,239) with respect to C i , to obtain
the following 16 differential equations.



e_'+c_P_+ (c.+3c3_2)p'+ c.Q_ - -_'"

H #

P3 + CIP3 + (C2+3C3C42)P3 + C_Q 3 = - cx3

P"+ c,e_+ (%+3cy)P +c.Q_ - -_.'

Ps'+ CIP _ + (Cz+3C3_._)Ps + C_Q s - 0

P_'+ ClP _ + (C 2+3C3c42)P _ + C,Q_ -- 0

P_'÷ CIP _ + (C2+3C3¢x2)P 7 + C_Q_ = 0

P_'+c,P_+ (c,+zcy)L +c.Q_ = 0

The initial conditions are

Q;'+ C,Q_+ (%+ac_/_2)% - c.PJ : -

i t :Qj'+ C_Q 3 + (C 2+3c3p_)Q _ -C,P_ _fi3

Q_'+c,Q_+ (% +3%f_)% _c.e_ - 0

Q;'+ c,Q; + (%+acorn)Q,-c.e; - o

Q:'÷c_q_+ (c.+3c_Z2)%- c.P_ : 0 .
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(7.240)

Aij =

stations

stations

The subscript "exp" denotes experimental values, while "calc" denotes calculated values obtained from the

numerical integration. New values of the coefficients are obtained by adding AC i to the present values, and

the iteration process is continued until any prescribed degree of convergence is reached.

Some miscellaneous notes relating to this technique should be listed.

(i) As a starting solution, an approach as outlined in the previous section is best. In many cases,

however, results from the tricyclic method or even educated guesses from a hand-fairing of the data
can be used.

(7.241)

where general elements of the h and B matrices are

t

P_ : Q_ : 1 at x = 0

all other Pi : Pi -- Qi = Qi = 0 .

Note that these are all linear differential equations with variable coefficients. However, both the variable

coefficients and the right-hand sides are known from the numerical solution to (7.239). Hence numerical integra-

tion of (7.239) and (7.240) can yield values of cc,/_, and all partial derivatives. It is necessary to inter-

polate during the integration to obtain the values at the particular "x" locations where data exist. Corrections

(AC i) to the starting values of the eight unknown coefficients can then be obtained by solving the matrix equation

[A] [AC] : [B] ,

8×88×1 8xl
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(ii) Although a large number of differential equations can become involved, the time to analyze a given

flight is not prohibitive. With the foregoing example, the time to get a converged solution (five

iterations) for a 200 ft flight is about 90 seconds on an IBM 7090.

(iii) Any known functions of distance (such as variable density) can easily be incorporated. For example,

in (7.239) if C l is replaced by Dill(x) , C 2 by D_f2(x) , etc., it is possible to solve for D i

exactly as C i was solved for. The functions of distance may be either expressions or tabulations.

(iv) A number of different flights of a given configuration can be analyzed simultaneously to obtain the

aerodynamic coefficients that best represent all flights. This would often be necessary to find terms

that are nonlinear in angle of attack.

(v) Alternate approaches for numerically fitting differential equations to experimental data are discussed

in References 7.27 and 7.28.

7.9 EXAMPLE CASES

7.9.1 Introduction

Examples showing application of some of the data reduction procedures that have been described will be given

next. First the determination of aerodynamic coefficients from analysis of data points in the vicinity of a

peak amplitude will be illustrated. This will be followed by examples illustrating the tricyolic analysis, and

finally by an example applying the method of numerical integration of the equations of motion.

7.9.2 Analysis Using Angles and Displacements Near a Peak

An example application of the procedure described in Section 7.6.2 will now be given, h planar motion was

generated numerically using nonlinear aerodynamic coefficients. A hail cycle of motion bracketing a peak was

then analyzed by the most complete version of the method in Section 7.6.2 (including damping) to see if the

versus x variation could be reduced to obtain the aerodynamic coefficients used to generate the motion.

The _ versus x segment analyzed is plotted in Figure 7.32. The center is found to be at x : 18.4 m where

: 24.89 ° . When both halves are plotted with the center as origin, the difference in the two curves can

easily be seen as shown in Figure 7.33. Each curve is fitted with a polynomial of the form

'_ -- _m = AIx2 + A2x3 _ A3 x_ ÷ A_x5 '

where c_ : 24.89 ° . The C m and _ curves deduced are shown in Figures ?.34 and 7.35. With no random errors

introduced into the _ data, both results are very precise except at _ < 10 ° , where the curvature in the

angle data tends to vanish. With various degrees of random error (uniform error distribution), the deduced C m

curves remain fairly accurate but the _ curves become poor rapidly as the maximum error is increased.

This example has also been used to illustrate the method for obtaining the lift coefficient as described in

Section 7.7.1. l_e deduced CL versus _ curves are shown in Figure 7.36. Included are results for exact

data (no random errors) and a case with random errors in both _ and z . Above 10 ° both curves are very

close to the exact curve.

7.9.3 Analysis Using Tricyelic Method

7.9.3.I Data Redaction Proce_lare 7":9

We will now discuss the overall procedure one might use for reducing data from a free-flight test utilizing

the tricyclic analyses for stability and lift coefficients (Sections 7.6.3 and 7.7.3) and the direct t versus x

analysis for drag coefficient (Section 7.5.1, Method 5). The emphasis here is on the interaction between the

various reduction procedures which have previously been described.

A representative flow diagram for the order of the calculations in reducing ballistic range data is shown in

Figure 7.37. The steps cml be summarized as follows:

(i) Determination of drag coefficient by fitting x-t data with (7.110); correction of z and (! data

for gravity effects.

(ii) Smoothing of experimental data. This smoothing procedure has not been discussed previously, but

basically seeks to eliminate data points which lie well outside the standard deviation of the fit

obtained. No exact criterion for rejection can be given but experience has shown that it is usually

helpful to eliminate data points having residuals greater than about 2.25 standard deviations and

replace them with the calculated values.

(iii) Determination of static and dynamic stability coefficients from angle data using tricyclic analysis

(Equation (7.154)).

(iv) Rotation of orthogonal coordinate system to reduce inherent error in tricyclic analysis due to large

angles.

(v) Determination of lift parameters from displacement data (Equation (7.216)) in conjunction with

tricyclic analysis of angles.
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(vi) Calculation of corrections to measured angles due to curvature (swerving) of the flight path.

(vii) Repeat stability analysis and continue with iterative scheme between stability and lift until angle

corrections from swerve remain constant.

(viii) Smooth angle and displacement data and repeat any steps that are necessary.

7.9.3.? Example, a_i (_mparison of Free-Flight and Wind-Tunnel Results

An example of the application of the above procedures, and a comparison of results from free-flight and

conventional wind tunnel tests of the same body shape at identical test conditions, is now made to illustrate

the generally good agreement and to point up a common discrepancy in drag results 7"29. The shape selected

is the AGARD standard hypersonic ballistic correlation model HB-2. Free-flight data obtained in the Pressurized

Ballistic Range at Ames Research Center _'29 are compared to wind-tunnel data from Arnold Engineering Development

Center (hEDC) 7"3°,7"al and some free-flight results from the Canadian Research and Development Establishment

(CAPJ)E) 7'32. The model used in the Ames' tests (Pig. 7.38) was ballasted at the nose to make it aerodynamically

stable. The two pins on the base were used to measure the roll orientation and the small frustum on the base

was gripped by the sabot during launch. The tests were conducted at a Mach number of 2.0 and a Reynolds number

based on cylinder diameter of 1.7 million, h shadowgraph of this model in flight is shown in Figure 8.17.

Figure 7.39 shows a typical set of position, time, and angle data for the free-flight tests. Figure 7.39(a)

shows the flight time as a function of distance and the resulting velocity decrease over the length of the range.

Figures 7.39(b), and (c) show the displacement and angular measurements.

The total drag coefficient* as a function of angle of attack is shown in Figure 7.40. The Ames data are indi-

cated by the circular symbols, through which a leant-squares curve has been drawn, and the AEDC data are indi-

cated by the dashed line. There is a significant difference in the level of C D between the ballistic-range

and wind-tunnel results although it is noted that the curves are roughly parallel. The wind tunnel total drag

was obtained by combining the contributions of forebody and bane drag measurements given in Reference 7.30.

Sting effects on the base pressure were suspected to be the cause of the discrepancy (see, e.g., Reference 7.33).

Therefore, the base drag coefficient was calculated from the flow-field configuration shown in shadowgraph

pictures of the free flight models. More detail on base pressure estimation is given in Chapter 8, Section

8.5.4. This base drag coefficient, when added to the AEDC forebody drag, gave the shaded region in Figure 7.40

(the region brackets the results from four different flights analyzed in this manner). The agreement with the

free-flight measurements of total drag is now excellent.

The lift-curve slope, as deduced from the swerving motion of each model, is shown in Figure 7.41 plotted

against pitching amplitude. These data indicate that the lift coefficient is linear with angle of attack at

least to 7 degrees. The wind-tunnel result for lift-curve slope (deduced from normal and axial force

measurements) is shown, together with a value obtained using the Ames-deduced base pressure in the axial

force contribution. The agreement between free-flight and wind-tunnel results is very good.

A curve of normal force versus angle of attack was calculated from the measured lift and drag data where

C L = 3.40_ and C D _ 1.239 + 0.00249_2 and C s = C Lcos_ + C Dsina . The results are plotted in Figure 7.42

and are compared to AEDC wind-tunnel data and to ballistic-range data obtained at CARDE 7'3_. The CARDE results

fall slightly lower throughout the angle of attack range.

The nonlinear pitching-moment coefficient was calculated by the method described in Section 7.6.4.6 with

linear and cubic terms in resultant angle of attack chosen as most representative of the data. (Higher order

polynomials were examined but gave nearly identical results.) One flight at low amplitude (a m= 1.8 °) revealed

a significant decrease in static stability, which is reflected in the lower initial slope of the Ames pitching-

moment curve in Figure 7.43. The curves determined at hEI)C and ChRDE indicate slightly higher values for the

pitching moment. Small differences in boundary-layer conditions or base pressure, as well as measurement

inaccuracies, could contribute to the discrepancy.

As shown in Figure 7.39(c), the angular motions of these models were fairly heavily damped. The values

obtained for the dynamic-stability parameter for unpowered flight at constant altitude,

md 2

C o - (Cm_ _ Cm&)= CL_ +--T- '

are shown in Figure 7.44(a) while the values for (C m +C m.) are given in Figure 7.44(b). The wind-tunnel
q

result, from Reference 7.3l, shows about 20% less dynamic stability than the free-flight results. The reduced

frequencies _Jd/V) for these two sets of tests were different (0.010 and 0.006, respectively) which might have

an influence on the data.

It is concluded from these comparisons that ballistic range tests and wind tunnel tests will give closely

comparable aerodynamic coefficients when the test conditions are similar, and that most discrepancies which

occur can be explained in terms of known effects (e.g., sting interference effects, differences in boundary

layer transition point, etc.).

* In the aerodynamic coefficients that are presented, the reference area is the cylinder cross-sectional area and the

reference length is the cylinder diameter.
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7.9.4 Analysis Using Numerical Integration of Equations of Motion

A series of ballistic-range tests of models of the Gemini capsule, conducted in 1962 in the Ames Pressurized

Ballistic Range, indicated that both the static moment and the damping moment governing the model oscillations

were nonlinear functions of angle of attack TM. Four of these flights were found to he essentially planar and

were analyzed simultaneously with the method described in Section 7.8.2 us illg one-degree-of-freedom simulation

given by

0:"_ (H0_H2C_)c_ ' + (M0+M2C¢2)5( : 0 . (7.242)

The constants H0 and H 2 define the nonlinear damping moment, while the constants M0 and M2 define the

nonlinear static moment. Twelve unknown coefficients were sought; four aerodynamic parameters, and eight

initial conditions, two for each flight. The solution converged as follows: SD(C() - 2.29 ° , 1.40 ° , 0.88 ° ,

0.75 °, 0.7426 °, 0.7424 °, 0.7424 °. The data points for the four flights together with the fit obtained by this

method are shown in Figure 7.45. Values of the four coefficients are as follows:

-0.0199 0.000344 0.224 -0.000404

H ° - H2 - M0 : M2 -
m m deg 2 m 2 m 2 deg 2

Several points should be

analysis of four flights is

This comparison is shown in

the value at _ = 0 ° is in

made at this time. The first is that the nonlinear static moment obtained by this

in good agreement with that obtained using the method described in Section 7.6.4.6.

Figure 7.46. No comparison with the nonlinear damping moment is possible; however,

good agreement with results in Reference 7.34.

Another point is that if one looks carefully at the fits to the experimental data shown in Figure 7.45, three

of the motions are matched very well, while run 582 is not matched as well. For this run (although small-

amplitude and hence small residuals) the fitted motion leads the data points at the early stations, reproduces

the data well in the middle of the flight, and lags the data points at the end of the flight. When the analysis

was first performed, it was not realized that any intentional difference existed between the models tested in

the four flights. However, the model tested in run 582 turned out to have had no "simulated window cutouts",

whereas the models for the three other flights did have these simulated windows. As discussed in Reference 7.34,

the effect of the window cutouts was relatively minor, but when more than one flight is being analyzed at once

as in the present case, minor differences in the aerodynamics can be detected. This kind of effect becomes more

and more pronounced with increasing distance flown.

The three remaining runs, where the design model geometry wa_ constant, were then analyzed together. As would

be expected, the standard deviation in the fit did become better, (SD(_) - 0.7183 °) but the improvement was small

due to the small amplitude of run 582. The values of the coefficients are now: H 0 : -0.0180, H 2 = 0.000315,

M0 : 0.220, M2 - -0.000380. These coefficients generate moments that differ only slightly from the previous
set. The static moment obtained from these coefficients is also shown in Figure 7.46.

7. 10 MISCELLANEOUS TOPICS

In this section, two topics will be considered. The first is the study of rolling motions. In particular,

reference will be made to cases where a roll torque exists and hence the assumption made previously of a constant

roll rate is invalid. It is sometimes of interest to study either roll acceleration due to control deflections,

or roll damping. Interest in these properties can be stimulated by practical problems of missiles with fins,

or even bodies without fins which sometimes acquire rolling velocity due to small asymmetries.

The other topic is the treatment of density variations along the flightpath. This has been mentioned briefly

in Section 7.5.2.2 on drag determination and Section 7.8.2 on numerical integration. The motivation for con-

sidering it is the countercurrent ballistic facility (Chapter 5), in which the density encountered by a model

is never absolutely constant. Density variations with respect to pitching motions will be emphasized and practi-

cal methods of handling them will be indicated•

7.10.1 Determination of _ll Derivatives

The equation for the angular momentum about the _ axis in terms of Euler angles is given as follows. Using

the expression for the kinetic ener_ given by (7.30) in the Lagrangian equations, one obtains

I_(_, E , 51ECOS_ - _tE(_ sin_;) + (I_- I_) [(_sin _,sin'i,Ecos_!_ E -

- ¢,7 SiDT"ECOS_'J E + (c,_ E sin,7) (COS?¢E - sin2_JE)] : Q¢E "

This applies to a general body. In this section, we are going to consider (near-) axisymmetric bodies, but are

going to allow small roll-producing asymmetries, like canted fins. It can still be assumed that Ip : I2 ,

and then the above equation reduces to

The moment L is of aerodynamic origin. Retaining the most dominant terms in (7.74), we can write

pV2Al _ "_Pl CiB_ _L : 2 l0 + C/p + Ci _ + . (7. 244)
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is the static rolling moment; it is normally produced by an asymmetry, like canted fins, deflected

, _ins, etc. C/p is the damping due to roll, and Cl_ and Cl_ are changes in the rolling moment with

of attack and sideslip.

Equation (7.243), with the moment given by (7.244), is difficult to solve in its present form since it is

JUpled to the motion in the other degrees of freedom. In practice, however, when rolling moment coefficients

are to be determined, the model is rolled at a fairly rapid rate and, hence, the motion about the other axes

tends to be small by comparison. It may then be permissible to assume that the terms in (7.243) involving 0 E

and _ are small and can be neglected. With this assumption and a similar argument for terms with _ and

_, (7.243) and (7.244) are combined to obtain

= -- + -- (7. 245)
2I_ 0 Clp

For consistency with previous discussions a change will be made to x dependence. Equation (7.245) then

becomes (note that _b_ = p)

_,, f,h C_o ÷ ml2 _ , pal
- Ct _JE = -- C (7. 246)

n _-m I i- 2I_ l0 "

The solution to this is
-a3x

_E = ao + alx + a2e (7. 247)

where a o and

and

a 2 are constants of integration, a I is the equilibrium roll rate given by

a 1 : -Clo

CD IClp)

a 3 = ___ + C l .
2m n

(7,248)

(7.249)

There are several alternatives to the application of these equations to obtain rolling moment coefficients.

The most general is to seek a least squares fit of (7.247) to _E versus x data, and hence obtain C/0 and

Clp . Since a 3 appears as an exponent, a leant-squares procedure using differential corrections is required

(see Appendix). The disadvantage to this approach is that the data must be very accurate or extend over a long

distance to yield accurate roiling-moment coefficients. The reason is apparent if one considers an expansion

of (7. 247) for small values of a3x ; that is

a2a_x 2 3 3a2a3x
_E : (a0 +a2) + (al-a_a3)x + + ... (7.250)

2 6

In order to obtain the four coefficients (a o to a3) , terms to order of x 3 must be retained. This means to

obtain accurate values of the a's, the data must be accurate to a small term cubed (a_x3). This is equivalent

to being able to determine the third derivative of CE accurately.

If the roll rate changes only a small amount over the instrumented range (¢_ _constant), the total rolling

moment is essentially constant and hence the solution to (7.246) can be written as

_E : Co + Ctx + VPAI +pA +-- C Po (7.251)

L2Iy cto 2m D I£ t _ '

where P0 is the average roll rate over the length of the test flight not far different from the initial roll

rate C 1 . A least-squares curve fit of (7.251) to CE versus x data will yield a value of the total rolling

moment (since C D is known from the drag reduction) but will not permit separation of C/p and C/o terms.

If two tests are conducted, identical in all respects except roll rate, and they both satisfy the assumption

of small roll rate change, then it is possible to separate the two terms.

Under special test conditions we can make one of the coefficients dominant and neglect the other. Near zero

roll rate the C/c term will dominate and the data can be curve fit using (7.251) to determine C/o . Similarly,

for certain model geometries and very accurate model construction, the Clo term can be made very small and a

curve fit using either (7.251), or (7.247) with the atx term dropped, will yield C/p .

7.10.2 Variable Density

When testing in a counter-current ballistic facility, the possibility exists that the density of the test

medium may vary with both time and position within the facility. This makes extraction of the aerodynamic

coefficients more difficult. As noted in Section 7.8.2, the integral method can handle this problem quite

generally. However, it is useful to consider some of the more traditional techniques that have been applied

in the past 7"35,7"36
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Typically, the density encountered by the model changes slowly with distance flown. In most instances, the

density can be represented simply by P - P0 - ax , with a change in density of less than 20_ between the first

and last data station. Under these circumstances, an effective method of accounting for the density variation

is as follows: the data are first analyzed by the constant-density methods already described (using the average

density over the trajectory) and values of both the aerodynamic coefficients and initial conditions are obtained.

These values are then used with the measured density variation, in the differential equations of motion. The

equations are numerically integrated to generate a motion which roughly approximates the motion obtained experi-

mentally. This generated motion is then analyzed by the constant-density program (again using the average

density) and the computed coefficients compared with the input values.

The values of CD, Cmu, and CL_ obtained by the constant density analysis have been found to show very

close agreement with input values, and thus require no adjustment. The computed value of the dynamic stability

parameter _ , however (and hence (Cmq t Cm_)) , differs significantly from its input value. It is found by

repeating the process of generating a motion, then analyzing it with the constant-density program, for different

values of _ that a simple relationship exists between the actual and calculated values, namely

,_(actual) -,_(calculated) = const.

Thus, the value obtained from analyzing the experimental data can be corrected to obtain the proper value.

Note that the constant in the above equation applies to a specific set of data. What the equation means is

that the constant-density program, applied to a given set of experimental data where the density varied slowly,

introduces a certain error in ,_ that is independent of _ . It is probable that the foregoing approach would

be of little use if the density variation encountered were either very large or highly nonlinear.

With an arbitrary density variation, if the successive peak angles of attack are known, the following

equations may be applied. It has been shown 7'36 that the envelope of the mlgle of attack of a coasting body

in free flight can be written as

where

Coe½]B(x) dx

_env (x) : [_Cmjx)p(x)V2(x)/2]ly,, (7.252)

/>A
B(x) : -- CDJ

2m

C D CL_ _- (Cmq+

: [CD- 11 '

Note that C O has been assumed constant in deriving this equation, but that any of the other aerodynamic

coefficients, as well as the density, can be arbitrary functions of distance*.

When both the aerodynamic coefficients and density are constants, (7,252) reduces to (7.142b), namely

_env(X) Cle(PA/_m)_x

When the aerodynamic coefficients are constants, but the density variation is arbitrary, a simple expression

can again be obtained for _env " Equation (7.108) is integrated once to give

-f(ph/2m)c Ddx -(I/,I)fB(x) dx

- _o e £o e

Then _-J12 : _Jl2e½fB(x) dx

and (7.252) can be written

C2(1) -J/2 C_(_)-5/_CD

'_env(X) - [p(x)V_(x)/2]_/. ii)(x))11.. (7.253)

With peak angles of attack presumed known, together with velocity and density variations, the parameter J

can be easily determined from ballistic range data. If the density variation is not extreme, C a and CLa

can be determined from the constant-density program and hence (C m + Cm. ) follows. For more extreme density

variations, an approach like that described zn Section 7,8 would have to be used to find the components of

the parameter J .

* Note also that (7.252) is an asymptotic solution, and hence would not be accurate in cases like the first Iew cyc]es of

mot ion during atmospheric entry. Pertaining to ballistic ranges, however, it is essentially exact.
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7.11 ERROR ANALYSIS*

In closing this chapter, we will undertake to discuss how accurately aerodynamic coefficients can be deter-

mined from ballistic range tests 7"3_. This is a difficult question to answer, even partially. In the first

place, the problem is statistical in nature. Instead of talking about a coefficient being accurate to within

plus or minus some number, statements must be made concerning parameters like the standard deviation in the

coefficient, h further concern is that errors that degrade the results can enter from a variety of sources,

and some of these are not amenable to analysis. Errors can he introduced by

(i) Incorrect determination of physical characteristics of the model.

(ii) Incorrect determination of test conditions (pressure, temperature, etc.).

(iii) Erroneous time measurements.

(iv) Erroneous measurements of model position or attitude angle on the film.

(v) Incorrect position reference system calibration (Chapter 6).

(vi) Incorrect mathematical model used in analyzing raw data.

These errors can be either random or systematic. The random errors come brincipally from misreading the film.

To consider how random errors affect the deduced aerodynamic coefficients, a simplified approach will be followed

and it is assumed that angle-distance data satisfy the equation

= Be Dx cos (27rx/k) . (7.254)

Note that the constant D is proportional to the dynamic stability parameter _ and the wavelength _ is

proportional to Cma .

7.11.1 Dynamic-Stability Parameter

An approximate expression for the standard deviation in the dynamic-stability parameter can be derived as

follows. The sum of the squares of the angle residuals (SSR) is defined by

)2 ,
SSR _i (_i-_exp i

where _i is the value of _ calculated from (7.254) at point x i , and _exPi is the experimental value of

at this point. Differentiating this equation with respect to D and setting the result equal to zero gives

5(SSR)

_D 2 Z (_i _exPi) _i- _
i

= 0 . (7.255)

Assume B and £ are known exactly and that 5{exPi is given by

DEX i

_exPi = BEe cos (271xi/_E) .I A_ i , (7.256)

where the subscript E denotes exact values and A_ i is the experimental error in _ at x i . Now let

D : D E + AD , substitute (7.254) and (7.256) into (7.255), expand the exponentials involving AD retaining

only linear error terms, and solve for AD . This gives

D Ex i

B E i_ A_ixie cos (2_xi/_E)

AD ::

2 2DEXi

B_ i_ xie COS _ (27rXi/_E)

The variance of D , which is the same as the variance of AD , can now be obtained.

VAR(a)
VAR(D) :

2 2 2DEXi

BE i_ xie cos 2 (2_7Xi/__E)

Now expand the exponential retaining terms linear in x , assume that the data points are close enough

together to allow replacing the summation by an integration, and neglect all oscillatory terms after integrating,

The result is

6 VAR(_)
VAR(D) ::

B2X2N3n (I + 3_DN/2) '

* As a supplement to this section, the Appendix (Section 7.12) shows how a differential correction procedure can be used

in estimating errors in the deduced coefficients.
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where N is the number of cycles of motion being analyzed, and n is the number of data points per cycle. We

want the standard deviation in the dynamic-stability parameter _ . Since _ :: 2D/K (Equation (7.139)) where

K : ph/2m , the variance of _ can be related to that of D as follows:

4 4D 2

vAa(f) = _ VAR(D)+--=.VAR(K)K"

The standard deviation is the square root of the variance, and the final result is

[_ 24 [SD(_)]2(1 + 3K_N/4) _2 [SD(K)]K_2}
SD(_) = _lB2K2_N3 n + . (7.257)

A number of approximations have been introduced in deriving this expression. Nevertheless, the expression

yields results that are in very good agreement with results from a Monte Carlo analysis. This is shown in

Figure 7.47, where the standard deviation in _ is plotted versus the number of cycles of motion being analyzed

(N) for a variety of number of data points per cycle (n). Each data point represents the results of analyzing

20 cases having random errors in the angle data (using the tricyclic method of analysis, Section 7.6.3). It is

noted that SD(_) increases rapidly below N = 1_ as would be expected, due to the difficulty in being able

to differentiate between damping and trim angle. Results fr_ (7.257) are shown for two values of n .

7. II, 2 Static-Stability Parameter

A similar derivation for the standard deviation in the static-stability parameter

D in (7.254) are known exactly yields

Cat t = 7T2BPN3n (1 + 3K_'N/4) ÷ K 12 ' (7. 258)

where K I -- 2I/pAl . This equation has also been investigated by analyzing many cases containing random errors.

The results showed (7.259) to be valid and indicated similar trends to those shown in Figure 7.47, but the

induced errors were exceedingly small (always less than 1%). An accurate measure of Cm_ is far easier to

achieve than an accurate measure of _ .

C_ assuming that B and

7.11.3 Lift-Curve Slope

The swerving deviations from straight-line flight are used to deduce the li'ft-curve slope.

equation (simplified version of Equation (7.216))

By treating the

fox x BeDX (2_X/_) dxdxz : zo + zgx - KCL_ ,o[ _os

in a similar manner as was done in the discussion of the dynamic stability parameter (presuming now that all

constants except CLa are known exactly), the following equation for the standard deviation in the lift-curve

slope is obtained:

SD(CL_ ) _g_"-_s_-li + B2(T s + 1) + K_ "

Here T s is the total number of observation stations. The results of this equation have also been confirmed
by a Monte Carlo analysis.

7.11.4 Drag Coefficient

The time-distance equation which determines the drag coefficient is (Equation (7.11077

1 (e KCDx 1) .
t = t o +--

VoKC D

To obtain the standard deviation in C o , the exponential is expanded and terms to order x 2 are retained.

Again the derivation is similar to that for SD(_) , except here all three unknowns (CwVo, t o) are allowed to

contain errors, so the resulting expression is more accurate than those previously given. The result is

SD (CD) If 720(Ts - 3)! _V02 [SD(t)) 2 + [SD(x)] 2} C_ [SD(K)] 2 }
: + . (7. 259)

K2AX" (Ws + 2)! K2

Here Ax is the distance between data stations, assumed constant.
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Some insight can be gained by considering a specific example.

T s : I1 stations SD(x) = 0.000114m

Ax = 1.22m SD(t) = 0.02_sec

K = 0.00041/m Vo .SD(t) = 0.000122m

C D = 1.0 SD(K) : 0 .

Vo : 6100 m/see

Substituting these numbers into (7.259) leads to SD(CD) = 0,0187 . Twenty cases were generated using a uniform

error distribution with standard deviations as listed. These cases were analyzed by Method 5 described in

Section 7.5.1 and from these 20 cases, SD(C a) = 0.0198 , very close to 0.0187. The results for these cases,

in order of increasing drag coefficient, follow.

C D Z(St) 2 (see 2)

0.953 0.58 x l0 -1"

0.977 0.44

0.983 0.78

0.983 0.22

0.989 1.45

0.991 0.46

0.996 0.34

0.997 0.71

0,997 0.42

0.999 0.43

1.004 0.42

1.004 0.42

1,007 0.75

1.010 0.26

1.013 0.51

1.014 0.52

1.015 0.64

1.015 0.46

1.016 0.69

1.055 0,32 x 10 -14

Avg. 1.001 .

Also listed is the sum of the squares of the residuals for each case (ascribing all the error to time, none to

distance). In about half of the cases, the calculated drag coefficient is within 1% of the actual value.

There are two cases, however, where the calculated drag coefficient is off by a significant amount, about 5%.

Note that the sum of the squares of the residuals for these two cases would not indicate that bad answers had

been obtained. It is cases like these that prove perplexing when real data are being analyzed. Re-reading

the position data on the film would probably improve the answers, but nothing can be done to get different

time measurements.

7.11.5 Facility Calibration

It is obvious that poor position and angle calibrations of a ballistic facility can introduce errors in

deduced aerodynamic coefficients. Furthermore, these errors are more likely systematic than random, which

is a worse situation. What is interesting to point out here is how the facility calibration can be monitored

in the process of determining aerodynamic coefficients.

Every run analyzed yields, among other things, differences between measured and calculated values at every

data station. The drag routine gives time residuals (or equivalent _x V_t residuals), the stability routine

gives angle residuals, and the lift routine gives y and z residuals. If these residuals are saved, station

by station, from every run analyzed until there are enough of them to be statistically meaningful, then errors

(or changes) in the facility calibration can be detected. If the errors at each station are random, the

residuals should scatter about zero. If they scatter about a non-zero value, in all likelihood there is a

calibration error. From the error indicated, a correction can be made. This analysis is most meaningful if

done for a number of tests of a single configuration at given test conditions, since the variation in film

reading accuracy between different configurations and free stream conditions would be eliminated.

Figure 7.48 shows the y residuals versus station number from 32 tests of sphere-cone models conducted in

the Ames tJypervelocity Free-Flight Aerodynamic Facility. It is obvious that at some stations the scatter is

not symmetrical about zero. The fact that the amount of the scatter is about the same at every station indi-

cates that this is probably the reading accuracy, in this case SD(y) 4. 0.015cm. If the amount of scatter

differed from station to station (stations assumed identical), it could be an indication that the equations

used to analyze the motion were not sufficiently complete.
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7.13 APPENDIX

7.12.1 Method of Least Squares Using Differential Corrections

The problem can be stated as follows: given a set of experimental data and the function relating the

dependent and independent variables, find the unknown coefficients in the function such that a "best fit" to

the experimental data is obtained. The method of least squares determines a best fit on the basis of minimizing

the sum of the squares of the residuals (differences between experimental and calculated values).

The function can be written as

Y = f(x;C:,C 2 ....... C r) . (7.260)

where the C's are the unknown coefficients*. The sum of the squares of the residuals is then

SSR = i:i_" [Yexpl" - f(xiiCi,C 2.... Cr)12 (7.261)

where n is the number of data points. Note that the errors have all been assumed to be in the dependent

variable y . The minimization is achieved by taking the partial derivative of SSR with respect to each

coefficient. These expressions are equated to zero, summed over all data points, and the resulting equations

are solved simultaneously for the C's . This is straightforward if all the C's in the function, f , appear

in a linear manner. A simple example is the case where f is a polynomial. Consider the three-term polynomial

y = Clx2 + Cex + C 3 . The unknowns are obtained by solving the following three equations:

i=1 xi

x._, _xi

_x_

5"_. xi

n

-CI- -_. x_Yi_

i=1 |

i

C 2 : _-'_.xiYi I

C3_ _-_'Yi j

(7.262)

In many cases of practical interest, however, the coefficients appear in a nonlinear or transcendental manner.

For these cases the straightforward approach does not work, but a technique employing what are commonly called

differential corrections can be used instead. First an approximation to each coefficient must be available.

The function f can then be expanded in a Taylor series about this approximate solution.

___:bfo
f(x;Ct,C 2 ...... C r) : f°(x;C_,C_ ..... C_) ÷ j::_Cj _Cj .

The zero superscript refers to the approximate solution, and ACj : Cj - C_ .3
yields

Note that the AC.'s

forward. The partial

b(SSR)

In matrix form. then, we have

Substituting this into (7. 261)

S,SR -- exPi - f (xi,C I .... - --/'_Cj . (7.263)
i=l j =: c_Cj

appear in a linear manner and the minimization of SSR with respect to them is straight-

derivative of SSR with respect to _C k is

?:Ck 2 YexPi - ... _ L_Cj _k : 0 • (7. 264)
i=t j=l j

[A] [Ac] : JR] , (7. 265)

rxrrx_ rxl

where [/_ is a square matrix with elements

Ajk _f_ _fl
: Akj : 1=i _ _Ck ' (7.266)

* Note that some of the C's might represent initial conditions and not appear explicitly in f ; for example, if

.r:j'oY = g(w) dwdw , then y(0) and yl(0) would also be unknowns.
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AC is a column vector containing the corrections to the coefficients

and R is a col_n vector of the residuals

AC _=-

AC_

AC_

(7. 267)

_.(Yexp_- f_) _f_

_C rLi_--v

(7.268)

Note that normally the partial derivatives that appear in the h and R matrices have closed form expressions

and are hence easy to evaluate, h case was presented in Section 7.8.2, however, where numerical techniques were

needed to obtain the partial derivatives.

Equation (7.265) may be solved by hand for simple cases or on a computer for complicated cases. Symbolically,

the result is

_C = [h] -_ R , (7. 269)

where [A] -t is the inverse of [A] . New values of the coefficients are obtained by adding ACj to the present
value.

0
Cj : Cj + ACj . (7.270)

This new solution can now be considered as an approximate solution and the entire process repeated to obtain

a better solution*. This process continues until changes in the coefficients, ACj , approach zero or in practice
some small value. It is often easier to monitor the convergence process by computing the SSR for each iteration

and when it stops changing within some prescribed limit, the solution is considered converged. When this point

is reached, the best least squares set of coefficients has been obtained.

COV(Ci,C j )

Here A_] denotes the ij th element of the

An additional benefit of a differential correction process of this type is the simplicity with which the

accuracy of the various coefficients can be determined. It can be shown that after convergence, the elements of

the [A] -1 matrix are related to the variance (VAR) and covariance (COY) of the coefficients as follows:

-_, VAR(y) 1

VAR(C i ) = hii

_D(C i) = [VAR(Ci)]½ (7.271)

-_- VAR(y) i / j .z Ai j

[A] -_ matrix. -Thus if one can estimate the accuracy of the measured

quantity y , the accuracy of the coefficients can be obtained. Note that the standard deviation of the least

squares fit to the experimental data (SD = _/(SSR/n)) is normally better than the true measuring accuracy.

If the parameters of interest are related to the coefficients (C i) by a routine relationship, the following

equations can be used in conjunction with (7.271) to find the accuracy in these parameters. Let a and b be

constants.

VAR(aCI) :

VAR(aC 1 ± bC 2) :

VAR(aC2_)

VAR(aC_C 2)

VhR(e acl )

The two equations involving VAR(aC_)

random variables.

a 2 VAR(Cl)

a 2VAR(cl) + h2VAR(C2) ± 2abCOV(C1,C 2)

a 2 [4C_VAR(CI) + 2VAR2(C1)]

a 2 [C_VAR(C_) + C_VAR(C2) ÷ 2CIC2COV(CI,C2) + VAR(Cl)VAR(C2) + COV2(C,,C2)]

c_ V'_(C2) -__ COV(Ct,C2)

a2e 2acl [VAR(C 1) + _a2VAR2(C_) + _a" VAR3(C_) + ..... ].

and VAR(aCIC 2) are exact if C_. and C 2 are normally-distributed

* There is no guarantee that this iteration procedure will not diverge. However, with reasonable initial estimates of the

coefficients, convergence is normally obtained.
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